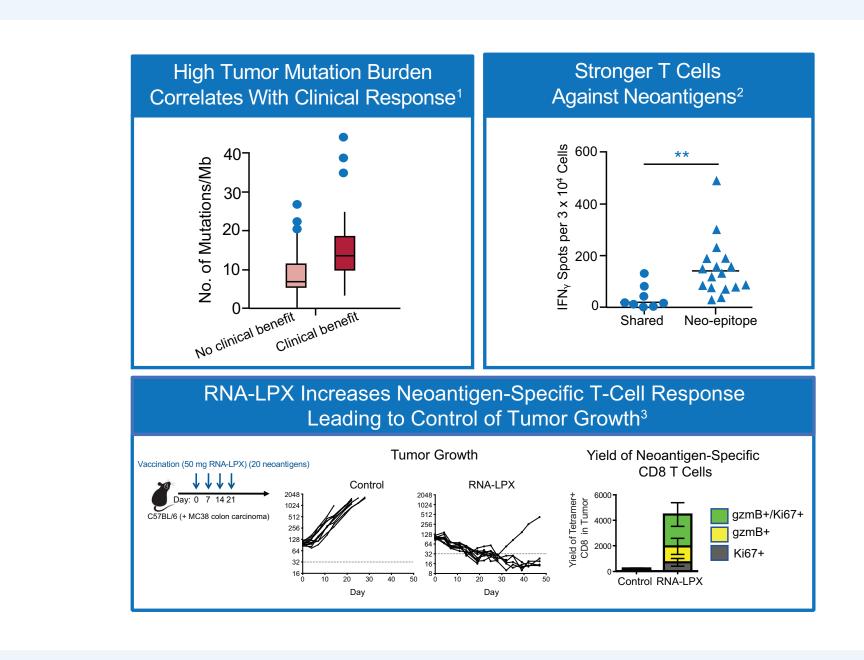
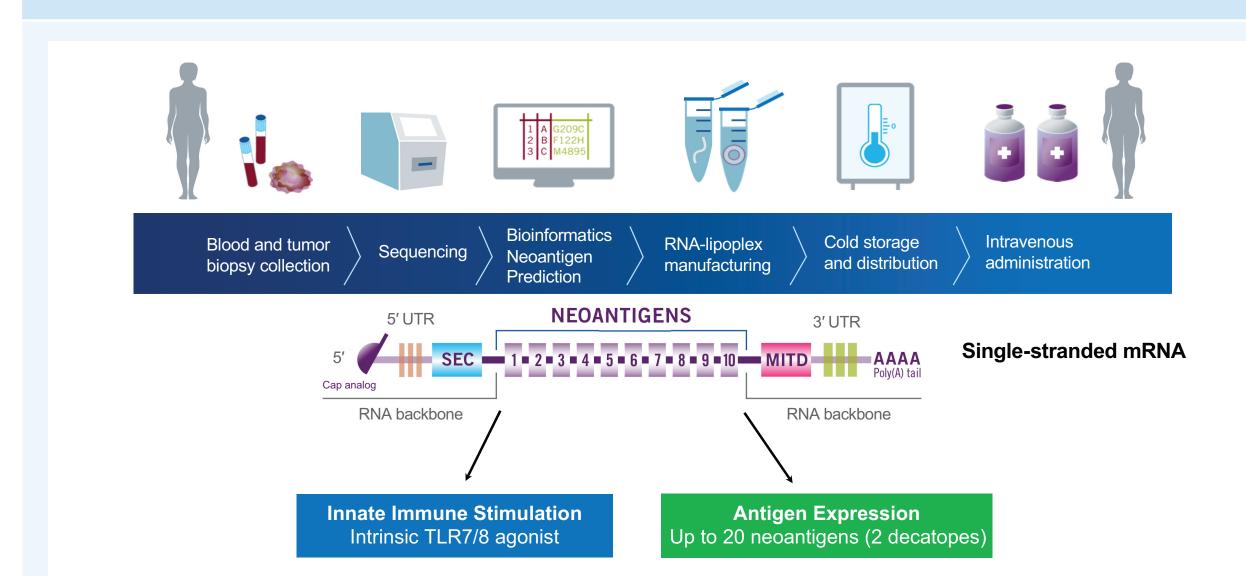
A Phase Ia Study to Evaluate R07198457, an Individualized Neoantigen-Specific Immunotherapy (iNeST), in Patients With Locally Advanced or Metastatic Solid Tumors

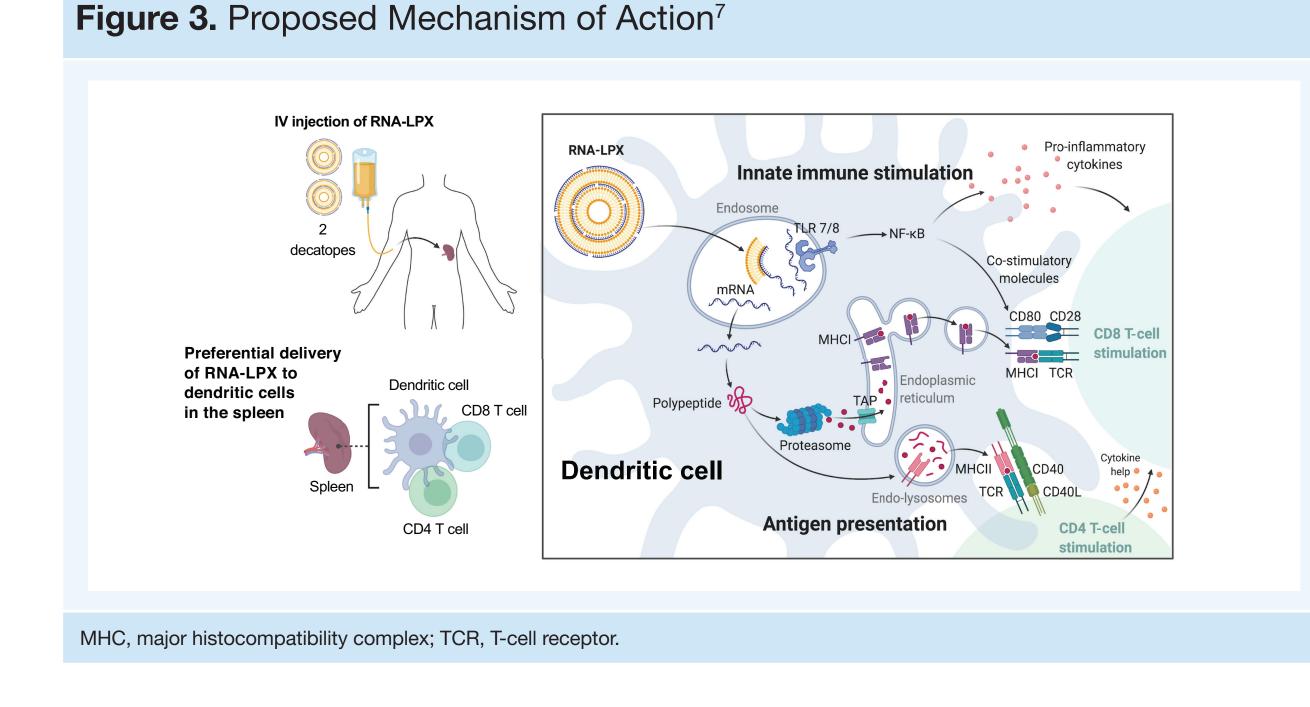

Braiteh F,¹ LoRusso P,² Balmanoukian A,³ Klempner S,³ Camidge DR,⁴ Hellmann MD,⁵ Gordon M,⁶ Bendell J,⁷ Mueller L,⁸ Sabado R,⁸ Twomey P,⁸ Delamarre L,⁸ Huang J,⁹ McDonald P,⁸ Müller F,¹⁰ Derhovanessian E,¹⁰ Türeci Ö,¹⁰ Sahin U,¹⁰ Siu LL¹¹

¹Comprehensive Cancer Center Nevada, Las Vegas, NV; ²Smilow Cancer Center, Yale University, New Haven, CT; ³The Angeles, CA; ⁴Division of Medicine and Developmental Therapeutics Program, University of Colorado Cancer Center, Aurora, CO; ⁵Memorial Sloan Kettering Cancer Center, New York, NY; ⁶HonorHealth, Scottsdale, AZ; ⁷Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; ⁸Genentech, Inc., South San Francisco, CA; ⁹F. Hoffmann-La Roche, Ltd, Basel, Switzerland; ¹⁰BioNTech SE, Mainz, Germany; ¹¹Princess Margaret Cancer Centre, Toronto, Canada

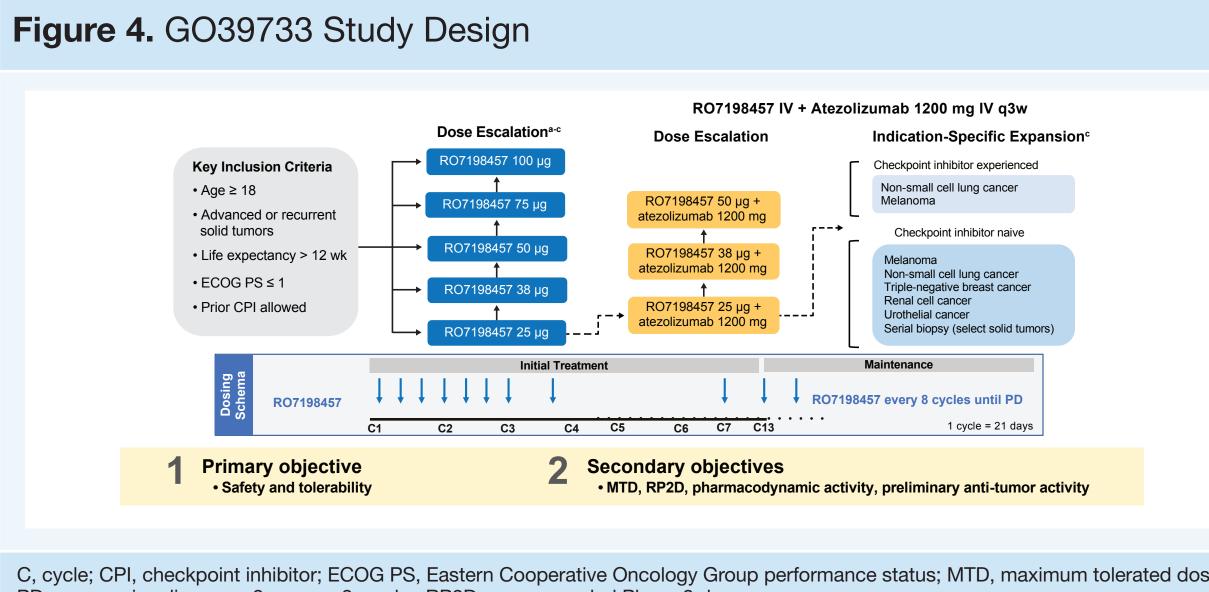
BACKGROUND

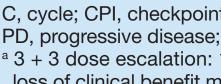
- High tumor mutation burden correlates with clinical response to immune checkpoint blockade
- Mutated neoantigens are recognized as foreign and induce stronger T-cell responses than shared antigens, likely due to the lack of central tolerance
- Most of these mutated neoantigens are not shared between patients; therefore, targeted neoantigen-specific therapy requires an individualized approach
- RO7198457 (RG6180) is a systemically administered RNA-Lipoplex Neoantigen Specific immunoTherapy (iNeST) designed to promote anti-tumor immunity by priming de novo and boosting pre-existing neoantigen-specific T-cell responses


Figure 1. Individual Immune Responses to Neoantigens Necessitate the Need for Individualized Therapy


LPX, lipoplex.

Targeting Neoantigens Requires an Individualized Approach


Figure 2. Development of Individualized RNA-LPX Technology⁴⁻⁶



Proposed Dual Mechanism of Action of R07198457: TLR7/8 Stimulation and Neoantigen Presentation

METHODS

RESULTS

Median (range) age, Female, n (%) ECOG PS, n (%) Most common tumor Breast cancer (HEI Prostate cancer Ovarian cance Bone sarcoma Endometrial cancer Gastric cancer Soft tissue sarcom Median (range) numb Prior checkpoint inhi PD-L1 (Ventana SP1 < 5% IC and TC

 \geq 5% IC or TC ECOG PS, Eastern Cooperative Oncology Group performance status; HER, human epidermal growth factor receptor; HR, hormone receptor; IC, tumor-infiltrating immune cell; PD-L1, programmed death-ligand 1; TC, tumor cell. Data cutoff: January 10, 2020.

Exposure and Disposition of Patients During Dose Escalation

Table 2. Patient Exposure and Disposition During RO7198457 Treatment

	RO7198457 IV Dose					
	25 μg (n = 13)	38 μg (n = 5)	50 μg (n = 4)	75 μg (n = 8)	100 μg (n = 1)	Total (N = 31)
DLT, n (%)	0	0	0	0	1 (100) ^a	1 (3)
RO7198457 dose reduction, n (%)	0	1 (20)	0	0	0	1 (3)
Median (range) treatment duration, days	43 (1-123)	42 (15-128)	40 (15-254)	40 (9-69)	56 (56-56)	43 (1-254)
Continuing treatment, n (%)	0	1 (20)	1 (25)	0	0	2 (7)
Discontinued study treatment, n (%)	13 (100)	4 (80)	3 (75)	8 (100)	1 (100)	29 (94)
Reasons for treatment discontinuation, n (%)						
Crossover ^b	5 (38)	2 (40)	2 (50)	2 (25)	0	11 (35)
Disease progression	4 (31)	1 (20)	1 (25)	5 (62)	1 (100)	12 (39)
Death	0	0	0	0	0	0
AE	0	0	0	0	0	0
Withdrawal by subject	4 (31)	1 (20)	0	0	0	5 (16)
Other	0	0	0	1 (12)	0	1 (3)
Discontinued treatment due to disease progression prior to completing 6 weeks of therapy, n (%)	4 (31)	0	2 (50)	2 (25)	0	8 (26)
AE, adverse event; DLT, dose-limiting toxicity. disease progression or loss of clinical benefit		-	•	•	,	•

 GO39733 (NCT03289962) is a Phase Ia study of RO7198457 monotherapy in advanced solid malignancies

C, cycle; CPI, checkpoint inhibitor; ECOG PS, Eastern Cooperative Oncology Group performance status; MTD, maximum tolerated dose; PD, progressive disease; q3w, every 3 weeks; RP2D, recommended Phase 2 dose. ^a 3 + 3 dose escalation: 14-day DLT window; backfill enrollment at cleared dose levels. ^b Phase Ia patients with disease progression or loss of clinical benefit may cross over to combination therapy in Phase Ib. ° See Lopez JS, et al. AACR II 2020. Oral CT301.

Patient Demographics and Disease Characteristics

Table 1. Patient Demographics and Baseline Characteristics

	Dose Escalation (N = 31)
years	59 (21-77)
	20 (65)
	14 (45)
	17 (55)
or types, n (%)	
ER2+ or HR+)	6 (19)
	5 (16)
	4 (13)
	4 (13)
er	2 (7)
	2 (7)
na	2 (7)
ber of prior systemic therapies for metastatic disease, n	5 (1-17)
nibitors, n (%)	10 (32)
142), n (%)	
	28 (90)
	3 (10)

Adverse Events in Patients Treated With R07198457

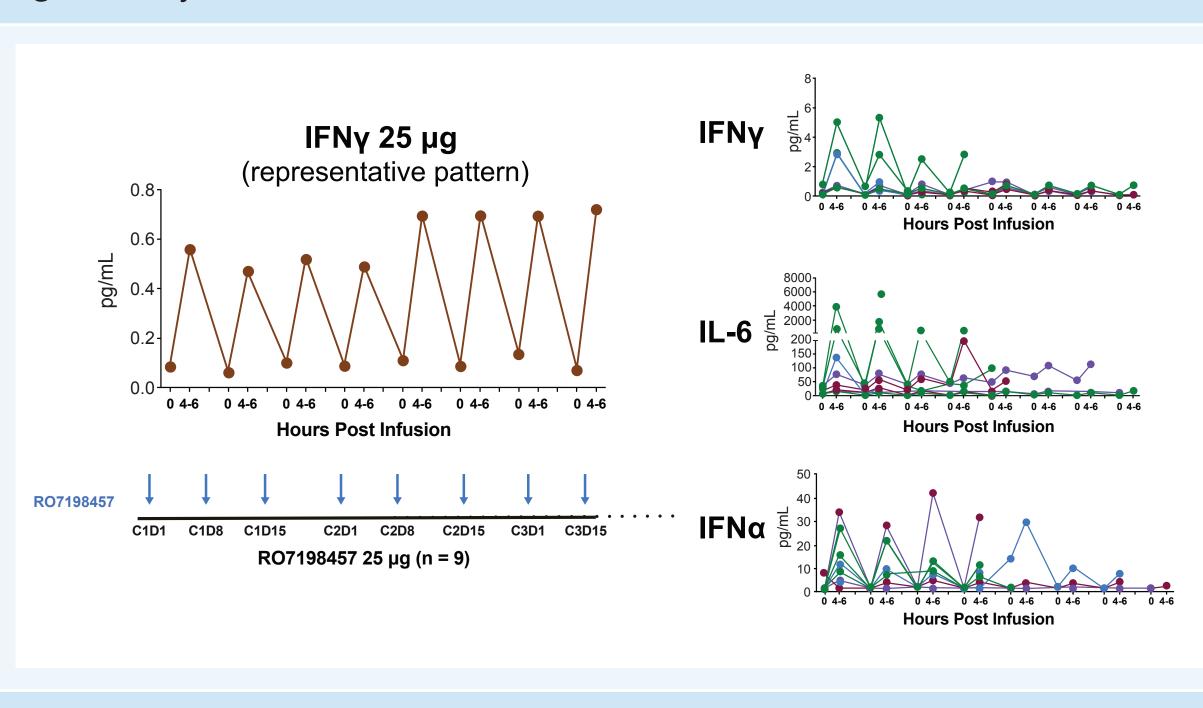
Figure 5. AEs Reported in > 10% of Patients Treated With RO7198457

Repo I All AEs (n	
	Systemic Infusion-related reaction
	Reactions ← Cytokine release syndrome ^b .
÷ -	Fatigue -
a -	Diarrhea -
1 -	Vomiting -
a -	Nausea -
a -	Myalgia -
a -	Dyspnea -
۱ -	Dehydration -
/ -	Pain in extremity -
÷ -	Decreased appetite -
1 -	Constipation -
۱ ـ	Abdominal pain -
100 90 80 70 60 50 40 30	l

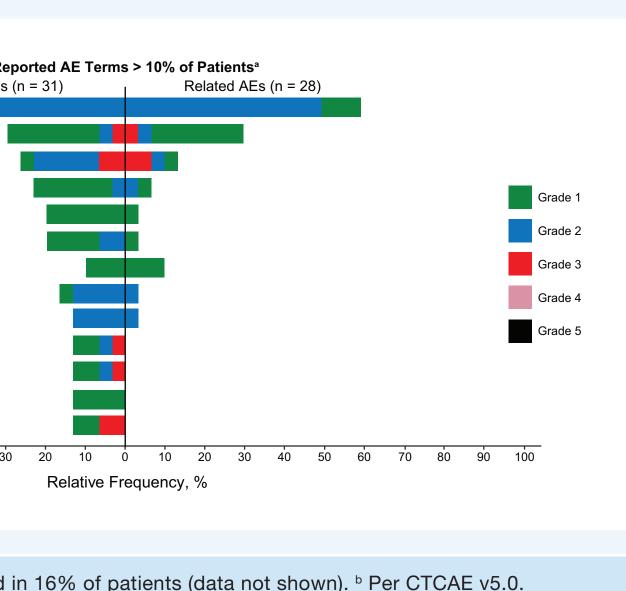
^a A serious AE of malignant neoplasm progression was reported in 16% of patients (data not shown). ^b Per CTCAE v5.0. Data cutoff: January 10, 2020.

Systemic Reactions (IRR, CRS, ILI) Were Transient and Generally Manageable in the Outpatient Setting

- Most systemic reactions occurred 2-4 hours post infusion and resolved within 1-2 hours
- Most events of hypotension and hypoxia were Grade 2


Table 3. Individual Signs and Symptoms of Systemic Reactions (CRS/IRR/ILI)
 in \geq 5% of Patients

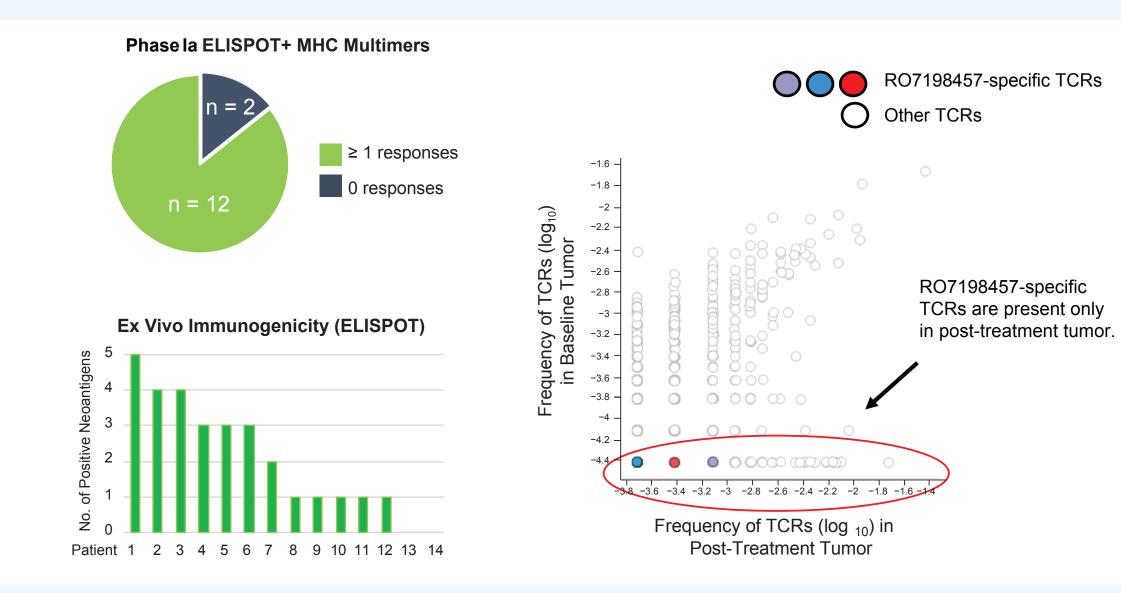
n (%)	25 μg RO7198457 (n = 13)	38 μg RO7198457 (n = 5)	50 μg RO7198457 (n = 4)	75 μg RO7198457 (n = 8)	100 μg RO7198457 (n = 1)	All Patients (N=31)
Chills	8 (62)	4 (80)	4 (100)	8 (100)	1 (100)	25 (81)
Pyrexia	6 (46)	2 (40)	3 (75)	5 (63)	1 (100)	17 (55)
Nausea	3 (23)	2 (40)	4 (100)	3 (38)	0	12 (39)
Headache	3 (23)	1 (20)	1 (25)	1 (13)	0	6 (19)
Vomiting	3 (23)	1 (20)	1 (25)	0	0	5 (16)
Hypotension	0	1 (20)	0	2 (25)	1 (100)	4 (13)
Hypoxia	0	1 (20)	0	1 (13)	1 (100)	3 (10)
Myalgia	2 (15)	0	0	1 (13)	0	3 (10)
Tachycardia	0	0	1 (25)	2 (25)	0	3 (10)
Neck pain	1 (8)	1 (20)	0	0	0	2 (7)
Sinus tachycardia	1 (8)	1 (20)	0	0	0	2 (7)
Tremor	0	1 (20)	1 (25)	0	0	2 (7)


JRS, Cytokine release syndrome (CTCAE V.S.U); IKK, Infusion-related reaction; ILI, Influenza-like illness. Data cutom: January 10, 2020.

RO7198457 Induced Pulsatile Release of Pro-Inflammatory Cytokines, Consistent With the Innate Immune Agonist Activity of the RNA

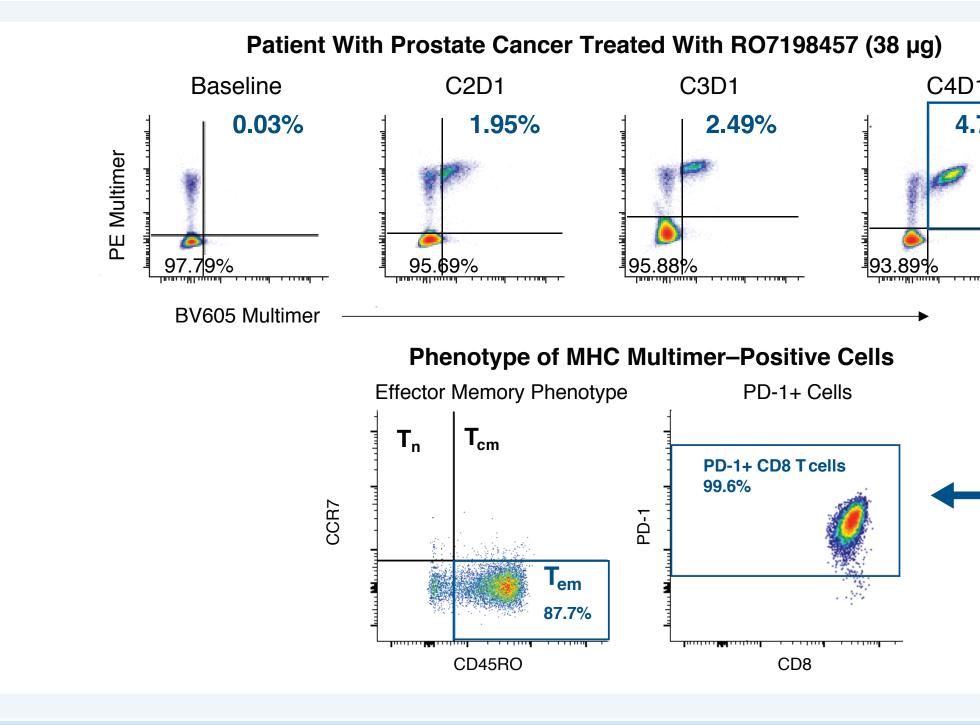
Figure 6. Cytokine Levels With RO7198457 Treatment

C, cycle; D, day; IFN, interferon; IL, interleukin. Data cutoff: January 10, 2020.



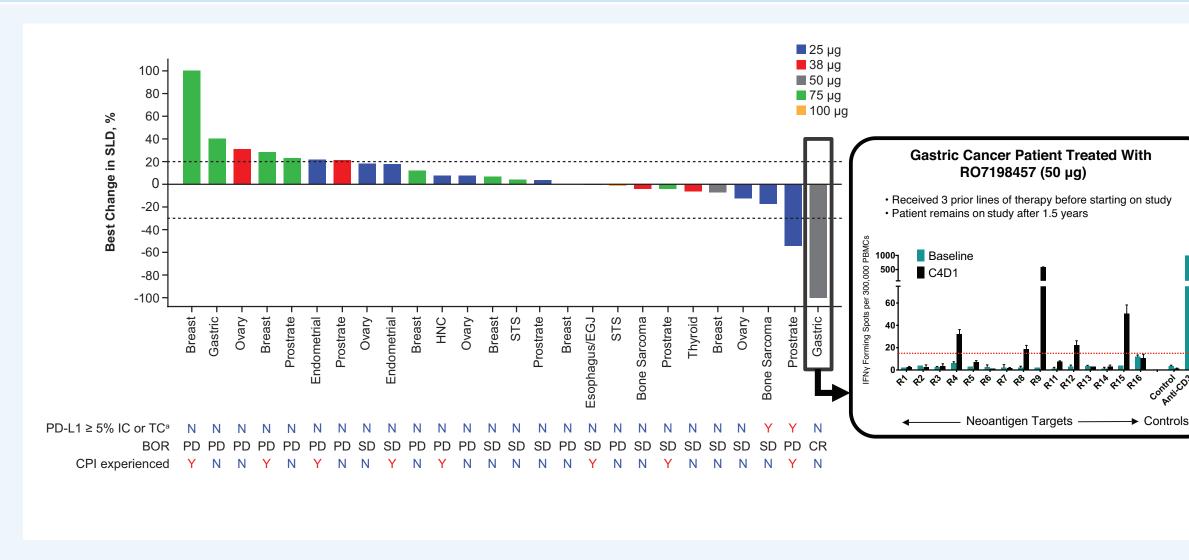
Immune Monitoring of T-Cell Responses Induced by RO7198457

- Ex vivo T-cell responses were detected in 86% of patients evaluated to date - Median number of 2 neoantigen-specific responses (range, 1-5). Ex vivo data were not available for all vaccine targets due to limited material and T-cell fitness
- In vitro stimulation with ELISPOT as a more sensitive measure of immune response to RO7198457 is ongoing
- Preliminary evidence suggests infiltration of RO7198457-stimulated T cells in the tumor (patient with prostate cancer treated with RO7198457 75 µg)^a ^a In collaboration with Adaptive Biotechnologies.


Figure 7. Neoantigen-Specific T-Cell Responses Induced by RO7198457

Data cutoff: January 10, 2020.

Immune Monitoring of Peripheral Blood–Detected T-Cell **Responses Induced by R07198457**


Figure 8. Kinetics and Phenotype of Neoantigen-Specific T-cell Responses

PD-1, programmed death-1.

RO7198457 Clinical Activity

Figure 9. Single-Agent Activity of RO7198457

BOR, best overall response; CPI, checkpoint inhibitor; CR, complete response; EGJ, esophagogastric junction; HNC, head and neck cancer; N, no; PBMC, peripheral blood mononuclear cell; PR, partial response; SD, stable disease; STS, soft tissue sarcoma; Y, yes. ^a PD-L1 expression on IC/TC analyzed by SP142 Ventana assay. Data cutoff: January 10, 2020.

RO7198457-specific TCRs are present only in post-treatment tumor.

4.7%

CONCLUSIONS

- RO7198457 was generally well tolerated
- One DLT of Grade 3 CRS occurred in the 100-µg dose cohort; the maximum tolerated dose was not reached
- Treatment-related AEs were primarily transient systemic reactions, manifesting as low-grade CRS, IRR or ILI symptoms. Systemic reactions were generally manageable in the outpatient setting
- Results from comprehensive immune monitoring were reflective of the dual mechanism of action of RO7198457
- Induction of pulsatile release of pro-inflammatory cytokines was observed with each dose
- Induction of neoantigen-specific T-cell responses was observed
- Preliminary evidence suggests infiltration of RO7198457-stimulated T cells in the tumor; a more detailed analysis of intra-tumoral immune responses is being evaluated in a dedicated biomarker cohort
- One CR was observed in a patient with gastric cancer
- A Phase Ib study of RO7198457 in combination with atezolizumab is ongoing (see Lopez JS, et al. AACR II 2020. Abstract 9985; oral CT301)
- Two randomized Phase II studies of RO7198457 are ongoing:
- RO7198457 + pembrolizumab for the first-line treatment of patients with melanoma (NCT03815058)
- RO7198457 as adjuvant treatment in patients with non-small cell lung cancer (NCT04267237)

REFERENCES

- 1. Rosenberg JE, et al. Lancet. 2016;387:1909-1920.
- 2. Sahin U, et al. *Nature*. 2017;547:222-226.
- 3. Vormehr M, et al. Oncolmmunology. 2020 May 13 [e-pub ahead of print].
- 4. Türeci Ö. et al. *Clin Cancer Res.* 2016;22:1885-1896.
- 5. Vormehr M, Türeci Ö, Sahin U. Annu Rev Med. 2019;70:395-407.
- 6. Sahin U, Türeci Ö. Science. 2018;359:1355-1360.
- 7. Kranz LM, et al. Nature. 2016;534:396-401.

ACKNOWLEDGMENTS

- We thank all of our patients who participated in this study and their families
- We also would like to thank the investigators and clinical research staff at the following clinical sites:
- Comprehensive Cancer Center Nevada
- Smilow Cancer Center, Yale University
- The Angeles Clinic and Research Institute
- University of Colorado School of Medicine and Developmental Therapeutics Program Memorial Sloan Kettering Cancer Center
- HonorHealth
- Sarah Cannon Research Institute/Tennessee Oncology
- Princess Margaret Cancer Centre, Toronto, Canada
- We thank the Genentech multimer group: Alberto Robert, Leesum Kim, Oliver Zill, Martine Darwish, and Craig Blanchette
- Editorial assistance for this poster was provided by Charli Dominguez, PhD, of Health Interactions and funded by F. Hoffmann-La Roche, Ltd

DISCLOSURES

F. Braiteh reports honoraria from Abbott Nutrition, Amgen, ARIAD, Astellas Pharma AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Daiichi Sankyo, Genentech/Roche, HERON, Immunomedics, Incyte, Insys Therapeutics, Ipsen, Lexicor Lilly, Puma Biotechnology and Taiho Pharmaceutical; consulting/advisory roles for Ambry Genetics, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb Celgene. Clovis Oncology. Genentech/Roche. Incvte. Insvs Therapeutics, Ipsen, Lexicor Lilly, Merck, Merrimack, Pfizer, Regeneron and Sanofi; speakers' bureau participation for Amgen, AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Genentech/ Roche, Incyte, Insys Therapeutics, Ipsen, Lilly, Merck, Merrimack, Pfizer and Taiho Pharmaceutical; and travel/accommodations/expenses from Amgen, AstraZeneca/ MedImmune, Bayer, Bayer/Onyx, Boehringer Ingelheim, Bristol Myers Squibb, Celgene Clovis Oncology, Exelixis, HERON, Incyte, Insys Therapeutics, Ipsen, Lexicon, Merrimack, Novartis, Pfizer, Regeneron, Roche/Genentech, Sanofi, Taiho Pharmaceutical and Tesaro. For co-authors' disclosures, please see the abstract.

CT169

Copies of this poster obtained through QR (quick response) and/or text key codes are for personal use only and may not be reproduced without written permission of the authors.