BIONT=Сゥ

Next Generation Immunotherapy

October 2021

This slide presentation includes forward-looking statements

This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, including, but not limited to, statements concerning our expected revenues and net profit related to sales of our COVID-19 vaccine, referred to as COMIRNATY® in the United States and European Union as approved or authorized for use under conditional marketing approval, in territories controlled by our collaboration partners, particularly for those figures that are derived from preliminary estimates provided by our partners; our pricing and coverage negotiations with governmental authorities, private health insurers and other third-party payors after our initial sales to national governments; the extent to which a COVID-19 vaccine continues to be necessary in the future; competition from other COVID-19 vaccines or related to our other product candidates, including those with different mechanisms of action and different manufacturing and distribution constraints, on the basis of, among other things, efficacy, cost, convenience of storage and distribution, breadth of approved use, side-effect profile and durability of immune response; the rate and degree of market acceptance of our COVID-19 vaccine and our investigational medicines, if approved; the initiation, timing, progress, results, and cost of our research and development programs and our current and future preclinical studies and clinical trials, including statements regarding the timing of initiation and completion of studies or trials and related preparatory work, the period during which the results of the trials will become available and our research and development programs; the timing of and our ability to obtain and maintain regulatory approval for our product candidates; the collaboration between BioNTech and Pfizer to develop a COVID-19 vaccine (including a potential booster dose of BNT162b2 and/or a potential booster dose of a variation of BNT162b2 having a modified mRNA sequence); the ability of BNT162b2 to prevent COVID-19 caused by emerging virus variants; our ability to identify research opportunities and discover and develop investigational medicines; the ability and willingness of our third-party collaborators to continue research and development activities relating to ou development candidates and investigational medicines; the impact of the COVID-19 pandemic on our development programs, supply chain, collaborators and financial performance; unforeseen safety issues and claims for personal injury or death arising from the use of our COVID-19 vaccine and other products and product candidates developed or manufactured by us; BioNTech's Malaria, Tuberculosis and HIV programs; timing for selecting clinical candidates for these programs and the commencement of a clinical trial, as well as any data readouts; the nature of the collaboration with the African Union and the Africa CDC; the nature and duration of support from WHO, the European Commission and other organizations with establishing infrastructure; the development of sustainable vaccine production and supply solutions on the African continent and the nature and feasibility of these solutions; our estimates of research and development revenues, commercial revenues, cost of sales, research and development expenses, sales and marketing expenses, general and administrative expenses, other operating income less expenses, finance income less expenses, income taxes, shares outstanding and basic and diluted profit for the period per share and our needs for or ability to obtain additional financing; our ability to identify, recruit and retain key personnel; our and our collaborators' ability to protect and enforce our intellectual property protection for our proprietary and collaborative product candidates, and the scope of such protection; the development of and projections relating to our competitors or our industry; our ability and that of our collaborators to commercialize and market our product candidates, if approved, including our COVID-19 vaccine; the amount of and our ability to use net operating losses and research and development credits to offset future taxable income; our ability to manage our development and expansion; regulatory developments in the United States and foreign countries; our ability to effectively scale our production capabilities and manufacture our products, including our target COVID-19 vaccine pro-duction levels, and our product candidates; our ability to implement, maintain and improve effective internal controls; our plans for expansion in southeast Asia and China, including our planned regional headquarters and manufacturing facility in Singapore as well as the joint venture with Fosun Pharma; and other factors not known to us at this time. In some cases, forward-looking statements can be identified by terminology such as "will," "may," "should," "expects," "intends," "plans," "aims," "anticipates," "believes," "estimates," "predicts," "potential, "continue," or the negative of these terms or other comparable terminology, although not all forward-looking statements contain these words. The forward-looking statements in this quarterly report are neither promises nor guarantees, and you should not place undue reliance on these forward-looking statements because they involve known and unknown risks, uncertainties, and other factors, many of which are beyond BioNTech's control and which could cause actual results to differ materially from those expressed or implied by these forwardlooking statements. You should review the risks and uncertainties described under the head-ing "Risk Factors" in this quarterly report and in subsequent filings made by BioNTech with the SEC, which are available on the SEC's website at https://www.sec.gov/. Except as required by law, BioNTech disclaims any intention or responsibility for updating or revising any for-ward-looking statements contained in this quarterly report in the event of new information, future developments or otherwise. These forward-looking statements are based on BioNTech's current expectations and speak only as of the date hereof.

Safety Information

Indication \& Authorized Use:

COMIRNATY® (COVID-19 vaccine, mRNA) is an FDA-approved COVID-19 vaccine made by Pfizer for BioNTech.

- It is approved as a 2-dose series for prevention of COVID-19 in individuals 16 years of age and older
 age and older who have been determined to have certain kinds of immunocompromise
The Pfizer-BioNTech COVID-19 vaccine has received EUA from FDA to:
- prevent COVID-19 in individuals 12 years of age and older, and
- provide a third dose to individuals 12 years of age and older who have been determined to have certain kinds of immunocompromise

Important Safety Information

 are breastfeeding, have received another COVID-19 vaccine, have ever fainted in association with an injection

- The vaccine may not protect everyone.
- Side effects reported with the vaccine include:
- There is a remote chance that the vaccine could cause a severe allergic reaction
 the vaccine for monitoring after vaccination
- Signs of a severe allergic reaction can include difficulty breathing, swelling of the face and throat, a fast heartbeat, a bad rash all over the body, dizziness, and weakness
- If an individual experiences a severe allergic reaction, they should call 9-1-1 or go to the nearest hospital

 after receiving the vaccine: chest pain, shortness of breath, feelings of having a fast-beating, fluttering, or pounding heart

 swollen lymph nodes (lymphadenopathy); diarrhea; vomiting; arm pain
 about bothersome side effects or side effects that do not go away
- There is no information on the use of the vaccine with other vaccines.

 800-438-1985.

Safety Information

COMIRNATY® ${ }^{\circledR}$ (the Pfizer-BioNTech COVID-19 vaccine) has been granted conditional marketing authorisation by the by the European Commission to prevent coronavirus disease 2019 (COVID-19) in people from 12 years of age. The European Medicines Agency's (EMA's) human medicines committee (CHMP) has completed its rigorous evaluation of COMIRNATY®, concluding by consensus that sufficiently robust data on the quality, safety and efficacy of the vaccine are now available.
Important safety information

- Events of anaphylaxis have been reported. Appropriate medical treatment and supervision should always be readily available in case of an anaphylactic reaction following the administration of the vaccine.
- Very rare cases of myocarditis and pericarditis have been observed following vaccination with Comirnaty. These cases have primarily occurred within 14 days following vaccination, more often after the second vaccination, and more often in younger men. Available data suggest that the course of myocarditis and pericarditis following vaccination is not different from myocarditis or pericarditis in general.
- Anxiety-related reactions, including vasovagal reactions (syncope), hyperventilation or stress-related reactions (e.g. dizziness, palpitations, increases in heart rate, alterations in blood pressure, tingling sensations and sweating) may occur in association with the vaccination process itself. Stress-related reactions are temporary and resolve on their own. Individuals should be advised to bring symptoms to the attention of the vaccination provider for evaluation. It is important that precautions are in place to avoid injury from fainting.
- The efficacy, safety and immunogenicity of the vaccine has not been assessed in immunocompromised individuals, including those receiving immunosuppressant therapy. The efficacy of COMIRNATY® may be lower in immunosuppressed individuals.
- As with any vaccine, vaccination with COMIRNATY® may not protect all vaccine recipients. Individuals may not be fully protected until 7 days after their second dose of vaccine.
- In clinical studies, adverse reactions in participants 16 years of age and older were injection site pain (> 80\%), fatigue (>60\%), headache (>50\%), myalgia and chills ($>30 \%$), arthralgia ($>20 \%$), pyrexia and injection site swelling (>10\%) and were usually mild or moderate in intensity and resolved within a few days after vaccination. A slightly lower frequency of reactogenicity events was associated with greater age.
- The overall safety profile of COMIRNATY® in adolescents 12 to 15 years of age was similar to that seen in participants 16 years of age and older. The most frequent adverse reactions in clinical trial participants 12 to 15 years of age were injection site pain (> 90%), fatigue and headache ($>70 \%$), myalgia and chills ($>40 \%$), arthralgia and pyrexia ($>20 \%$).
- There is limited experience with use of COMIRNATY® in pregnant women. Administration of COMIRNATY® in pregnancy should only be considered when the potential benefits outweigh any potential risks for the mother and fetus.
- It is unknown whether COMIRNATY $®$ is excreted in human milk.
- Interactions with other medicinal products or concomitant administration of COMIRNATY® with other vaccines has not been studied.
- For complete information on the safety of COMIRNATY® always make reference to the approved Summary of Product Characteristics and Package Leaflet available in all the languages of the European Union on the EMA website.

The black equilateral triangle denotes that additional monitoring is required to capture any adverse reactions. This will allow quick identification of new safety information. You can help by reporting any side effects you may get. Side effects can be reported to EudraVigilance [http://www.adrreports.eu/] or directly to BioNTech using email medinfo@biontech.de, telephone +49613190840 , or our website https://medicalinformation.biontech.de/

Next generation Immunotherapy

Harnessing the full potential of the immune system

Building a fully integrated biopharmaceutical company

Immunotherapies for cancer \& infectious diseases and beyond

Broad suite of novel technologies

Industry-leading global collaborations

Transformed Into a Fully Integrated, Global Immunotherapy Company

mRNA Technology Poised to Revolutionize Immunotherapy

Today	Tomorrow	The Future
mRNA vaccines established as a New Drug Class	mRNA technology potential to Displace Traditional Modalities	mRNA potential to open up new opportunities Beyond the Horizon
BNT162b2 Diversification and maturation of our mRNA technology enabled the accelerated development of our COVID-19 vaccine	- mRNA infectious disease vaccines - mRNA cancer vaccines - CAR-T cell amplifying mRNA vaccine - Systemic mRNA encoded immuno-therapies	- Autoimmune diseases - Allergy - Inflammation - Regenerative medicine - Other therapeutic areas

taRNA Broad IP portfolio covering technologies, targets and formulations.

Infectious Diseases: A Long-term Growth Pillar

mRNA vaccines to combat major global health burden

Malaria:

- Development of first mRNA-based Malaria vaccine recently started
- Implementation of sustainable end-to-end vaccine supply solutions in Africa planned
HIV and tuberculosis ${ }^{2}$:
- Preclinical development of multiple product candidates ongoing

Opportunity to impact infectious

 diseases with high unmet need- Up to 10 mRNA vaccine candidates in preclinical development ${ }^{3}$

BNT161 influenza vaccine candidate designed to improve traditional vaccines

- First patient dosed in Phase 1 trial
- Eligible for milestone payments and royalties through Pfizer agreement

Potential to Tackle Multiple Diseases with Different Therapeutic Modalities

Oncology: Multiple product opportunities with unique combination potential in clinical testing

A Technology Agnostic Approach Targets a Broader Addressable Cancer Market

Cancer segment	Patient Population	Challenge	Our Therapeutic Strategies
High mutational burden/ adjuvant stage cancers	Significant portion of cancer patients	Poor risk-benefit profile of checkpoint inhibitors	- mRNA Neoantigen Immunotherapy (iNeST)
Low mutational burden cancers	$>60 \%$ of cancers	Poor response to checkpoint inhibitors	- Shared Antigens (FixVac, CAR-T cells, Neoantigen- targeted T cells, Antibodies)
"Immune desert" cancers	$>40 \%$ of high-mutational cancers	Poor infiltration and activation of T-cells in TME1	- RNA Immunotherapy Immunostimulatory Compounds (intratumoral, RiboCytokines)
Cancers with MHC / B2M	20-30\% of CPI-experienced advanced cancers	Failure of immune system to recognize tumor cells	- Antibodies Ioss
Refractory tumors	Patients with large tumors and multiple resistance mechanisms	Few treatment options	- Cell Therapies

Next Wave Oncology Advancing Innovation Beyond Current Boundaries

RiboMabs²
mRNA encoded
Antibodies

FPD, first patient dosed; CLDN6, Claudin-6, CAR-T cells, chimeric antigen receptor T cells; IL-2, interleukin 2;
11 IL-7, Interleukin 7; PBMC, peripheral blood mononuclear cells; FIH, first in human
BIONT三Сゥ
Reinhard K, et al. Cancer Immunotherapy 2020; 367:446-453; 2 Stadler et al, Oncoimmunology 2018

On Track to Achieve Multiple Significant Data \& Clinical Milestones in 2H 2021

Eight Clinical Trial Initiations in 2021, Including Three Randomized Phase 2

5+ Trial Updates

BNT162b2: Multiple updates

- BNT311: Bi-specific CPI:

PD-L1 x 4-1BB in solid tumors

- BNT312: Bi-specific CPI: CD40 x 4-1BB in solid tumors
- BNT211: CLDN-6 CAR-T + CARVac in solid tumors
- BNT411: TLR-7 agonist +/- CPI
in solid tumors

(5) $\begin{gathered}3 \text { Randomized } \\ \text { Phase } 2 \text { Trial Starts }\end{gathered}$

BNT111: FixVac + CPI in CPI-R/R melanomaBNT113: FixVac HPV16+ + CPI in 1L HNSCCBNT122: iNeST (autogene cevumeran) in adjuvant mCRC7 First-in-human Phase 1 Trial StartsBNT211: CLDN-6 CAR-T + CARVac in solid tumorsBNT221: NEOSTIM individualized neoantigen-T cell therapy in melanomaBNT151: Ribocytokine (modified IL-2)BNT152+153: RiboCytokine
IL-7 / IL-2 combo in solid tumors

- BNT141: RiboMab (undisclosed)
- BNT142: RiboMab bi-specific CPI in solid tumors (CD3xCLDN6)BNT161: Influenza vaccine program

Building a 21st Century Global Immunotherapy Powerhouse

Increase global

footprint

- New regional headquarters planned in Singapore
- Commercial subsidiaries established in Germany and Turkey
- Offices established in the United States

Expand integrated

 infrastructure- Continue investment in innovation to support future product launches
- Invest in clinical, commercial and manufacturing, and digital capabilities
- Attract and retain top talent

- 15 product candidates in oncology in 18 ongoing clinical trials
- 3 potentially registrational phase 2 trials initiating in 2021
- Advance innovations into first-in-human studies
- Strategic in-licensing to complement internal R\&D

We Collaborate with Global Leaders in Our Industry

Agenda

Overview and business outlook

Pipeline

Deeper dive on our key programs

COVID-19 vaccine program (project "Lightspeed")
mRNA vaccines - FixVac and iNeST

Antibodies

Cell Therapies - CARVac and NEO-STIM T cell therapy

Small Molecule Immunomodulators

RiboCytokines

Oncology: 15 Product Candidates in 19 Ongoing Clinical Trials

Drug class	Platform	Product Candidate	Indication (Targets)	Preclinical	Phase 1	Phase 2	Phase 3	Rights Collaborator	Milestones
$\sum_{\underset{E}{\mathbf{N}}}^{\mathbb{E}}$	FixVac (fixed combination of shared cancer antigens)	BNT111	advanced melanoma					fully-owned	
		BNT112	prostate cancer					fully-owned	
		BNT113	HPV16+ head and neck cancer ${ }^{1}$					fully-owned	
		BNT115	ovarian cancer ${ }^{1}$					fully-owned	
	iNeST (patient specific cancer antigen therapy)	autogene cevumeran (BNT122)	1L melanoma					$\begin{aligned} & \text { Genentech } \\ & \text { (global 50:50 } \\ & \text { profit/loss) } \end{aligned}$	
			adjuvant colorectal cancer						
			solid tumors						
	Intratumoral Immunotherapy	SAR441000 (BNT131)	solid tumors (IL-12sc, IL-15sushi, GM-CSF, IFNa)					$\begin{array}{\|c\|} \hline \text { Sanofi } \\ \text { (global } \\ \text { profit/loss share) } \end{array}$	
	RiboCytokines (mRNA-encoded Cytokines)	BNT151	solid tumors (optimized IL-2)					fully-owned	
		BNT152 + BNT153	solid tumors (IL-7, IL-2)					fully-owned	
	Next-Gen CP ${ }^{2}$ Immunomodulators	GEN1046 (BNT311)	solid tumors $(P D-L 1 \times 4-1 B B)$					$\begin{aligned} & \text { Genmab } \\ & \text { (global 50:50 } \\ & \text { profit/loss) } \end{aligned}$	Data update in 2H 2021
		GEN1042 (BNT312)	solid tumors (CD40×4-1BB)						Data update in 2H 2021
	Targeted Cancer Antibodies	BNT321 (MVT-5873)	pancreatic cancer (sLea)					fully-owned	
SMIM ${ }^{3}$	Toll-Like Receptor Binding	BNT411	solid tumors (TLR7)					fully-owned	Data update in 2H 2021
Cell Therapies	CAR-T Cells	BNT211	solid tumors (CLDN6)					fully-owned	Data update in 2H 2021
	Neoantigen-based T cell therapy	$\begin{aligned} & \text { BNT221 } \\ & \text { (NEO-PTC-01) } \end{aligned}$	solid tumors					fully-owned	
$16{ }^{1}$ BNT113 and BNT115 are currently being studied in investigator-initiated Phase 1 trials. ${ }^{2}$ Checkpoint Inhibitor.					${ }^{3}$ Small Molecule Immunomodulators. ${ }^{4}$ FPD $=$ First Patient Dosed				ワ\|0

Early-stage Oncology Pipeline: 2 Additional FIH ${ }^{1}$ Trials to Begin in 2021

Drug class	Platform	Product Candidate	Indication (Targets)	Rights Collaborator	Milestones
$\underset{\substack{\mathbb{N} \\ \underline{E}}}{\text { n }}$	FixVac	BNT116	NSCLC	fully-owned	
	RiboMabs (mRNA-encoded antibodies)	BNT141	solid tumors	fully-owned	Phase 1 start in 2H 2021
		BNT142	solid tumors (CD3+CLDN6)	fully-owned	Phase 1 start in 2H 2021
Cell Therapies	CAR-T Cells	BNT212	pancreatic, other cancers (CLDN18.2)	fully-owned	
	TCRs	to be selected	all tumors	fully-owned	

1first-in-human

Broad Infectious Disease Pipeline

Agenda

Overview and business outlook

Pipeline

Deeper dive on our key programs

COVID-19 vaccine program (project "Lightspeed")
mRNA vaccines - FixVac and iNeST

Antibodies

Cell Therapies - CARVac and NEO-STIM T cell therapy

Small Molecule Immunomodulators

RiboCytokines

Shipped >1.5 Billion Doses to >130 Countries \& Territories Worldwide ${ }^{1}$

A concerted and large-scale global effort

Project Lightspeed - a 10-month Journey to an Effective and Safe Vaccine

How mRNA Vaccines Work - Training the Immune System for a Real Infection

mRNA is a Natural Solution for Vaccines Especially in a Pandemic

A Leading Provider Globally of COVID-19 Vaccines: ~2.2 Bn Doses Contracted for 2021*

Selected Regions	2021 Orders	2022 and beyond
EU	660 m	900 m doses (plus option for additional 900 m$)$
U.S.	410 m	90 m
Other	$\sim 1.150 \mathrm{~m}$	Canada, Israel and others
TOTAL	~ 2.2 bn	>1 bn (excl. options)
Ongoing discussions for additional doses in 2021/2022		
and beyond		

2 bn doses pledged over the next 18 months to ensure global equitable vaccine access

Marburg facility:
Targeting 1 bn dose annual run-rate capacity once fully operational

Significant Progress Across Six Key Levers to Expand COVID-19 Vaccine Reach

Increased Manufacturing Capacity

Label Expansion to Additional Populations

Regulatory Advancement Across
All Geographies
Regulatory Advancement Across
All Geographies

Optimize Formulations to Further

 Simplify Access Worldwide- Continued efforts to establish multi-continent manufacturing capabilities to support global vaccine needs South Africa and Latin America collaborations to expand BNT/Pfizer manufacturing network
- Expansion of authorizations for adolescents 12 years of age and older in U.S., EU and other countries
- Submitted initial clinical data on children 5 to <12 years of age to FDA; EMA submission planned
- Ongoing trial in children 2 to 11 years and 6 months to 2 years of age: data expected Q4 2021
- Global Phase $2 / 3$ trial in healthy pregnant women

- First COVID-19 vaccine to receive full FDA approval ${ }^{1}$
- Converting existing emergency use authorizations into regulatory approvals globally
- Regulatory submission for BLA in China underway

Addressing Waning
Immune Reponses

Addressing SARS-CoV-2 Variants

- Storage at $2-8^{\circ} \mathrm{C}$ for 31 days approved by multiple regulators, including EMA and FDA
- Phase 3 trial for ready-to-use and lyophilized formulations
- Booster dose granted EUA by FDA for 65+ years of age and certain high-risk groups 18 to 64 years of age
- Initial, preliminary booster data: ~6 months after dose 2 of BNT162b2 show overall consistent tolerability profile while eliciting SARS-CoV-2 neutralization titers against wild type, Beta and Delta variant
- Expanded trials for third booster dose of BNT162b2 and multiple variant-specific approaches in both vaccine-naive and previously vaccinated individuals 6-12 months post dose 2

25 EMA, European Medicines Agency; FDA, U.S. Food and Drug Administration;
Approved as a 2-dose series for prevention of COVID-19 in individuals 16 years of age and older; 2-dose series under Emergency Use Authorization for individuals 12-15 years old

Strong Clinical Results:

Vaccine Efficacy Remains High up to 6 Months Following 2 ${ }^{\text {nd }}$ Dose 1,2

Clinical profile

- 95\% effective against symptomatic COVID-19 ${ }^{1}$
- Up to 6 months after dose 2^{2} :
- 91.2% effective against symptomatic disease
- 95.7\% effective against severe disease
- Well tolerated safety profile
- High titers of neutralizing antibodies
- Robust and poly-epitopic CD8+ and Th1 CD4+ T-cell responses ${ }^{3}$

Data Demonstrates Protection Against Circulating SARS-CoV-2 Variants Including Delta Variant

Neutralizing antibody titers

Reduced, yet preserved in vitro neutralizing activity of immune sera against several variants of concern, including: Alpha, Gamma, Beta, Eta, Delta ${ }^{1,2,3}$

Poly-specific T cell responses

Vaccinated individuals generate a T cell response targeting epitopes conserved

 across a number of variants, including the Delta variant ${ }^{2,4}$ YLQPRTFLI YLQPRTFLI YLQPRTFLI YLQPRTFLL
 QPTESIVRF QPTESIVRE

Real world data

Observed effectiveness against variants of concern including Delta variant ($95 \% \mathrm{Cl}$)

Real-World Study	Timepoint	Infection	Symptomatic	Hospitalization
Public Health England, NEJM July 20215; preprint July 2021²	$\geq 14 \mathrm{~d}$ post 2d -up to 2-3m	$88(78-93)$	--	$96(86-99)$
Public Health Ontario, Canada, preprint July 20217	$\geq 7 \mathrm{~d}$ post 2d - up to 1-2m	--	$87(64-95)$	100
Public Health Scotland, Lancet June 2021^{8}	$\geq 14 \mathrm{~d}$ post 2d -up to 2-3m	$79(75-82)$	--	--
Israel, MoH 9	$\geq 7 \mathrm{~d}$ post 2d - up to 6m	$39(9-59)$	$41(9-61)$	$88(79-93)$

BNT162b2 Booster Dose Results in a Broad, Robust Neutralisation Response

Booster dose could prolong protection and further increase breadth of protection against SARS-CoV-2 variants

- $3^{\text {rd }}$ dose strongly boosts neutralizing titers both in younger and older adults against ${ }^{1}$
- Wild type > 5-8-fold
- Delta variant > 5-11-fold
- Beta variant > 15-21-fold
when comparing month 1 data after dose 2 or dose 3
- Wild type and Beta variant titers continue to increase comparing day 7/month 1 data after dose 2 versus dose 3
- Overall consistent tolerability profile

Data being prepared for submission to regulatory authorities globally.

Preemptive Strategy to Address SARS-CoV-2 Variants

- Establishing development, manufacturing and regulatory pathway for variant-specific prototype approach

Prototype Approach substantiated by broad clinical data

Flexible Manufacturing Allows Rapid Adaptation to Variants

Global Consortium to Address Pandemic－BNT162 Global Collaborations

```
－Co－development and co－commercialization worldwide（ex China）if approved
－Combined upfront payment and equity investment of \(\$ 185\) million to BioNTech received in April
－Capital expenditures to be funded by each party independently
－Companies to share development expenses and gross profits on a 50：50 basis
－BioNTech eligible to receive further development \＆sales milestones up to \(\$ 563\) million
－Co－development with Fosun Pharma to hold exclusive marketing rights in China if approved
－Combined upfront payment and equity investment of \(\$ 51\) million to BioNTech received in April
```

FOSUNPHARMA
复星医药

```
－Fosun Pharma to fund development expenses in China
－BioNTech and Fosun to share gross profits on the sale of the vaccine in China
－BioNTech eligible to receive further China development \＆sales milestones up to \(\$ 84\) million
```


Agenda

Overview and business outlook

Pipeline

Deeper dive on our key programs

COVID-19 vaccine program (project "Lightspeed")

mRNA vaccines - FixVac and iNeST

Antibodies

Cell Therapies - CARVac and NEO-STIM T cell therapy

Small Molecule Immunomodulators

```
RiboCytokines
```


Our mRNA Vaccine Platforms: FixVac and iNeST

- Off-the-shelf mRNA immunotherapy
- Targeting a fixed combination of shared antigens
- Non-mutated shared antigens shared across patients
- Applicable for almost all types of tumor antigens

- Fully individualized mRNA immunotherapy
- Targeting 20 neo-antigens unique to each patient
- Vast majority of neo-antigens are unique to individual patients
- Applicable across solid tumor types

Proprietary RNA-LPX formulation for systemic dendritic cell targeting
Strong immunogenicity observed in vivo via TLR7-driven adjuvant effect
Potent induction of strong ex vivo CD4+ and CD8+ T cell responses

Our RNA-LPX Vaccine Approach

FixVac: Leveraging Shared Antigens to Break Immune Tolerance

Off-the Shelf Concept: Scalable for multiple indications

Vaccine Backbone	Lipoplex
Optimized, unmodified mRNA	Proprietary RNA-LPX
	formulation (IV)
ANTIENCNSSEITE	

$+$| Multi-antigen
 approach per
 tailored to each
 indication |
| :---: |
| Shared Antigens |$\underbrace{\text { FixVac }}_{$| Fixed vaccine combination |
| :---: |
| against shared tumor- |
| associated antigens |$}$

Targeting antigen presenting cells to stimulate antigen-specific T cell

responses

- Strong immunogenicity observed in vivo via TLR-driven adjuvant effect ${ }^{1}$
- Potent induction of strong ex vivo CD4+ and

Product Candidate	Indication (Targets)	Preclinical	Phase 1	Phase 2
BNT111	Advanced melanoma			
BNT112	Prostate cancer			
BNT113	HPV16+ head and neck cancer			
BNT116	NSCLC			
BN				

BNT111 FixVac Melanoma: Started Randomized Phase 2 Trial

Ongoing Phase
1 trial in Advanced Melanoma published in Nature

- Phase 1 trial data in CPI-experienced patients in monotherapy and in combination with anti-PD1 previously reported in July 2020 and published in Nature
- All patients showed tumor associated antigen (TAA) specific T cell responses with In vitro stimulation, and $>75 \%$ of patients showed immune responses against ≥ 1 TAA on an ex vivo basis
- T cells responses ramped up over 4-8 weeks and increased or remained stable up to over one year with monthly maintenance therapy
- Reported durable clinical responses in monotherapy and in combination with anti-PD1 accompanied by high magnitude CD4+ and CD8+ response
- Strategic collaboration to jointly conduct randomized Phase 2 trial with BNT111 and Libtayo $®$ (cemiplimab anti-PD-1 therapy)
- Targeting patients with anti-PD1-refractory/relapsed, unresectable Stage III or IV cutaneous melanoma
- Companies to share development costs equally and keep full commercial rights to own programs
- First patient was dosed in June 2021

BNT111: Off-the Shelf Therapeutic Vaccine for Melanoma

Potential to Improve Outcomes in Combination with Anti-PD1 by Rescuing from T Cell Exhaustion

nature

An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma

Ugur Sahin ๒, Petra Oehm, [...]Özlem Türeci

Phase 1 trial data published in Nature ${ }^{2}$:

- Tolerable safety as monotherapy and in combination with anti-PD1
- Durable objective responses in CPI-experienced patients with unresectable melanoma
- ORR: BNT111 monotherapy: 3/25 PR; 8/25 SD
- ORR: 35\% in combination with anti-PD1: 6/17 PR; 2/17 SD
- Clinical responses accompanied by strong CD4+ and CD8+ T cell immunity

BNT111: Treatment Options Needed to Address CPI Failure in Advanced Melanoma Patients

Melanoma Remains the Deadliest Skin Cancer

Incidence	Deaths	CPI R/R patients
$\mathbf{5 0 \%}$	20\%	$\sim 55 \%$
Annual cases have increased by nearly 50% to over $287,000^{1,2}$	WHO predicts by 2025, number of deaths will increase by $20 \% \%^{3}$	patients refractory to or relapse on CPI treatment, leaving them with limited treatment options

Significant Opportunity to Improve on Standard of Care

- 5 -year survival for metastatic melanoma still only $29.8 \%{ }^{5}$
- Frontline immunotherapy with CPI induces durable responses in max. 45-50\% of patients but with relatively short PFS ${ }^{4}$
- CPI resistant/ refractory patients that fail to respond to CPI or relapse after CPI have an especially poor prognosis with survival as short as 6 months depending on risk factors
- Advanced CPI R/R melanoma is a high medical need population with highly unfavorable prognosis

BNT111: Global Phase 2 Clinical Trial in Anti-PD1 R/R Melanoma Patients

Open-label, randomized Phase 2 trial

- BNT111 and cemiplimab in combination or as single agents
- Collaboration with Regeneron

Success Measures for BNT111 Trial
ORR 30\%

Primary Endpoints

- Arm 1: ORR by RECIST 1.1

Secondary Endpoints

- ORR (key secondary endpoint arms 2,3 DOR, DCR, TTR, PFS by RECIST 1.1
- OS, safety, tolerability, PRO

BNT113: Potential to Increase Response Rate and DoR to CPI by Stimulating Immune Response Against HPV16 Proteins

BNT113 encodes HPV16 oncoproteins E6 \& E7

- E6 and E7 proven to be well-suited for immunotherapy intervention
- Exclusively expressed in pre-malignant and malignant tissue
- Maintain the transformed state of infected malignant cells

- Demonstrated immunogenicity
- Not affected by central tolerance mechanisms

BNT113: Potent Antigen-Specific T Cell Responses in Phase 1 Trial ${ }^{1,2}$

- CD4+ and CD8+ ${ }^{+}$cell responses
- Responses detectable ex vivo, implying high numbers of T cells
- Responses against multiple E6 or E7 epitopes

ELISPOTS ${ }^{3}$ Patient 6
CD4 response to vaccine targets
Pre vaccination

Pepmix E6

PBMCs only

PBMCs only Anti-CD3

BNT113: Unmet Medical Need for HPV-Associated HNSCC

HPV+ Cancer is a Growing Global Public Health Concern

- Several types: HNSCC, Cervical, Anal, Vulvar, Vaginal, Penile
- HNSCC is the sixth most common cancer worldwide, with 890,000 new cases and 450,000 deaths in 2018 ${ }^{2}$
- Oropharyngeal is most common HNSCC, accounting for 70% of cases, and $80-90 \%$ are HPV16 $+^{3}$

Limited treatment options for patients not responding to or relapse on CPI^{1}

- HPV16+ HNSCC typically occur in younger people and is not associated with tobacco or alcohol use
- >60\% of patients diagnosed with late-stage HNSCC
- Current treatment options carry significant treatment burden or only work for some patients ${ }^{4}$:
- Chemotherapy, surgery, radiation
- CPI

Current SOC for recurrent/metastatic HNSCC	ORR	mOS (months)	mPFS (months)
pembrolizumab	m	17%	13.6
nivolumab 6	13.3%	7.7	8.0
chemotherapy 6	5.8%	5.1	2.0

BNT113: First Patient Dosed in Potentially Registrational Phase 2 Trial in HPV16+ and PD-L1+ HNSCC


```
Part A: Safety Run-in
    BNT113 +
    pembrolizumab
        n=12-18
        \leq24 months
```

SRC decision on safety and $\frac{\text { RP2DR to start Part B based on }}{\text { safety in Part A after one }}$ complete cycle

$\because \quad$	Part A: Safety Run-in
BNT113 +	
pembrolizumab	
$n=12-18$	
≤ 24 months	

Part B

Open-label, controlled, Phase 2 study

- BNT113 in combination with pembrolizumab as frontline treatment for metastatic HPV16+ and PD-L1+ HNSCC
- HPV 16 companion diagnostic is being co-developed and will be clinically validated alongside the trial

Primary Endpoints

- Part A: Emergence of TEAEs
- Part B: OS, ORR

Secondary Endpoints
Success Measures for BNT113 Trial

- PFS, DCR, DOR . mOS: 18 months (HR=0.667)
- Safety
- Patient reported outcomes
- ORR: 40%

iNeST¹: Tailored Treatment to Exploit Individual Targets

iNeST: Recent Update from BNT122 Reported at AACR

Phase 1a dose escalation: Monotherapy in locally advanced or metastatic solid tumors

- 31 patients enrolled, cohorts with doses ranging from 25-100ug
- Most common tumor types were HR+/HER2+ breast, prostate and ovarian cancer
- Median of 5 lines of prior therapies (range 1-17)
- Most patients enrolled had low level of PD-L1 expression in tumor
- Neoantigen-specific T cell responses observed in peripheral blood in 86\% of patients, significant T cell expansion and both naïve and memory activated phenotype
- Of 26 patients with at least one tumor assessment,
- 1 patient with gastric cancer and metastatic liver lesions had confirmed CR (ongoing for 10 months)
- 12 patients had SD

Phase 1b combination with atezolizumab demonstrated clinical activity in heavily pre-treated patients

- 132 patients enrolled, cohorts with doses ranging from 15-50 $\mu \mathrm{g}$
- Heavily pre-treated patient population
- Both CPI experienced and inexperienced
- Most patients with low PD-1
- Clinical responses associated with T cell response, correlating immune profiling of patients' T cells to cancer-specific response
- Of 108 patients with at least one tumor assessment
- 1 patient had CR as best response (0.9%),
- 8 patients had PR (7.4\%), and
- 53 patients had SD (49.1\%)
- Demonstrates ability to elicit significant T cell responses of both effector and memory phenotype as monotherapy and in combination
- Treatment-related adverse events were primarily transient systemic reactions, manifesting as low grade CRS, IRR or flu-like symptoms
- Early evidence of clinical activity in highly refractory patient population

iNeST: Recent Update from BNT122 Reported at AACR (Cont'd)

BNT122 induces CD8+ T cells in CPI-sensitive and CPI-insensitive tumor types

Patient With Prostate Cancer Treated With RO7198457 (38 (g)

BNT122 induces CD8+ T cell infiltrates in tumors

RO7198457-specific TCRs
 Other TCRs

Frequency of TCRs $\left(\log _{10}\right)$ in Post-Treatment Tumor

BNT122 iNeST Randomized Phase 2 Trials Ongoing and Planned

Study

design and patient population

Rationale

Status

A Phase 2, open-label, multicenter randomized trial of the efficacy and safety of BNT122 in combination with pembrolizumab vs. pembrolizumab in patients with previously untreated Advanced Melanoma

- Evaluate added benefit of 1L BNT122 in an advanced CPI-sensitive tumor (PFS, ORR)

- Success may unlock 1L use of iNeST in CPI-sensitive advanced cancers for combination therapy

Adjuvant colorectal cancer

A Phase 2, open-label, multicenter randomized trial to compare the efficacy of BNT122 versus watchful waiting in patients with ctDNA positive, surgically resected Stage $2 / 3$ rectal cancer, or Stage 2 high risk/stage 3 colon cancer

- Evaluate added benefit of BNT122 in a micrometastatic CPI-insensitive tumor (RFS)
- Success may unlock adjuvant use of iNeST for CPI-insensitive ctDNA+ cancer types

BNT122: Randomized Phase 2 Trial in Adjuvant Colorectal Cancer

Digitalization and Automation for Neo-antigen Vaccine Manufacturing

- 2 mRNA GMP production facilities: Idar-Oberstein (GMP since 2011) and Mainz (GMP since 2018)
- Construction and GMP licensure of new Mainz facility for iNeST expected in 2022/2023
- Partnered with Siemens to develop automated production processes

SIEMENS
 BIONT三Сゥ

Agenda

Overview and business outlook

Pipeline

Deeper dive on our key programs

COVID-19 vaccine program (project "Lightspeed")

mRNA vaccines - FixVac and iNeST

Antibodies

Cell Therapies - CARVac and NEO-STIM T cell therapy

Small Molecule Immunomodulators

RiboCytokines

BNT311: Next-generation Bispecific Antibody PD-L1x4-1BB

- Next-generation immunotherapy designed to enhance T cell and NK cell function through conditional 4-1BB co-stimulation while simultaneously blocking PD-L1 axis
- Bispecific antibody is 50:50 profit/loss share partnered with Genmab

Mechanism of action of Fc-silenced PD-L1×4-1BB bsAbs

> Interim results of ongoing Phase 1/2a trial presented at SITC 2020

Phase 1/2a dose escalation and expansion trial in heavily pretreated patients with advanced solid tumors to evaluate safety and initial anti-tumor activity

- Dose escalation ($\mathrm{n}=61$) data demonstrated manageable safety profile and preliminary clinical activity across advanced solid tumors
- Expansion cohort ($\mathrm{n}=24$) in NSCLC patients demonstrated encouraging preliminary responses

BNT311: Safety Trial in Patients with Malignant Solid Tumors (NCT03917381)

Phase 1
 Dose Escalation
 $\mathrm{N}=61$

Metastatic or unresectable solid tumors in patients who are not candidates for standard therapy

BNT311/GEN1046: intravenous flat dose every 3 weeks until disease progression or unacceptable toxicity

Study Endpoints
Safety and tolerability PK/PD
Anti-tumor activity
Biomarkers

8 expansion cohorts are currently recruiting
Phase 2a
Dose Expansion
$\mathrm{N}=\mathrm{Up}$ to 40 per cohort

BNT311: Interim Results of Ongoing Phase 1/2a Trial Manageable Safety Profile and Initial Clinical Activity in FIH Trial

- Most treatment-related AEs mild to moderate
- No treatment-related bilirubin increases or Grade-4
transaminase elevations
- Grade-3 elevations resolved
- 6 patients had DLTs
- MTD not reached

Dose escalation

- Clinical benefit across different dose levels and solid tumor types
- Disease control in 65.6\% of patients
- 4 partial responses:
- TNBC (1), ovarian cancer (1), CPI* pre-treated NSCLC (2)
- Modulation of circulating CD8+ T cells and serum levels of interferon gamma and IP10 observed
- Maximal induction 8-15 days after treatment

Dose expansion

- Encouraging preliminary efficacy in 12 PD-L1 relapsed/refractory NSCLC patients
- 2 confirmed partial responses
- 1 unconfirmed partial response
- 4 patients demonstrated stable disease
- Enrollment ongoing in 6 additional cohorts

BNT311: Interim Results of Ongoing Phase 1/2a - Safety Profile

TEAEs occurring in $\geq 10 \%$ of patients

TRAEs occurring in $\mathbf{\geq 1 0 \%}$ of patients

Dose escalation cohort	All patients $(\mathrm{N}=61)$		
	All grades, $\mathrm{n}(\%)$	Grade 3, $\mathrm{n}(\%)$	Grade 4, $\mathrm{n}(\%)$
Any TRAE	$43(70.5)$	$15(24.6)$	$3(4.9)$
TRAEs in $\geqslant 10 \%$ of patients, by preferred term			
Transaminase elevation	$16(26.2)$	$6(9.8)$	0
Hypothyroidism	$11(18.0)$	0	$1(1.6)$
Fatigue	$8(13.1)$	$1(1.6)$	0

- The most common treatment-related adverse events were transaminase elevations, hypothyroidism and fatigue
- Treatment-related transaminase elevations occurred in 26.2% of patients (9.8\% of patients had grade 3 transaminase elevations)
- There were no patients with Grade 4 transaminase, or treatment-related bilirubin increases
- MTD has not been reached

BNT311: Interim Results of Ongoing Phase 1/2a- Anti-tumor Activity Dose Escalation

Best percent change from baseline in tumor size

Disease control achieved in 65.6% of patients; four patients with PR
Includes 4 early partial responses in TNBC (1), ovarian cancer (1), and ICI-pre treated NSCLC (2) patients

Data cut-off: September 29, 2020. Post-baseline scans were not conducted for five patients
aMinimum duration of response (5 weeks) per RECIST v1.1 not reached.
${ }^{\text {b PR }}$ was not confirmed on a subsequent scan.
NE, non-evaluable; NSCLC, non-small cell lung cancer; PD, progressive disease; PD-(L)1, programmed death (ligand) 1; PR, partial response; SD, stable disease; SoD, sum of diameters;

BNT311: Interim Results of Ongoing Phase 1/2a -Anti-tumor Activity in CPI Recurrent/Refractory NSCLC Expansion

As of October 12, 2020, 24 patients were enrolled in expansion cohort 1, which includes patients with NSCLC with progression on or after ICI therapy

- 12 patients had post-baseline scans; 6 patients were still on treatment with BNT311/GEN1046, 6 patients discontinued
- Preliminary efficacy in 12 patients who could be objectively assessed showed two patients who achieved confirmed PR, one with unconfirmed PR, and four patients with SD

[^0]Includes all patients who had at least one post-baseline tumor assessment (schedule is every 6 weeks), and thus could be assessed for clinical benefit; 6 of 12 patients are still on treatment. BOR, best overall response; ICI, immune checkpoint inhibitor; NA, not available, NE, non-evaluable; NSCLC, non-small cell lung cancer; PD, progressive disease; PD-(L)1, programmed death (ligand) 1; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease; SOD, sum of diameters; TPS, tumor proportion score; uPR, unconfirmed partial response.

Agenda

Overview and business outlook

Deeper dive on our key programs

COVID-19 vaccine program (project "Lightspeed")
mRNA vaccines - FixVac and iNeST
Antibodies

Cell Therapies - CARVac and NEO-STIM T cell therapy

Small Molecule Immunomodulators

RiboCytokines

Proprietary Cell Therapy Pipeline and Capabilities

- Two cell therapy manufacturing facilities (Idar-Oberstein, Germany and Gaithersburg, U.S.)

Next generation CAR-T targeting CLDN6 with CARVac

Advanced tumors

Patient's PBMCs used to induce and expand multiple CD4 ${ }^{+}$and CD8+ neoantigen T cell populations ex-vivo

CPI nonresponsive
tumors

Ex-vivo engineered neoantigen specific TCR-T cell therapy further strengthened by an acquistion from Kite

Advanced tumors

BNT211: Repeated CARVac Dosing Enables Tunable Expansion of CAR-T Cells

CAR-T cell Amplifying RNA Vaccine (CARVac) drives in vivo expansion and efficacy of CAR-T against solid tumors

- CARVac is based on RNA-LPX that selectively targets secondary lymphoid organs
- I.V. administration of CLDN6 RNALPX results in expression of CAR antigen on APCs

- Repetitive administration of CARVac results in increased frequency, persistence and activity of CAR-T cells with a memory phenotype
- Combination of sub-therapeutic CAR-T dose and CARVac demonstrated eradication of advanced tumors in mice

BNT211: CLDN6-CAR Demonstrates Potent and Robust Target Recognition

CANCER IMMUNOTHERAPY
An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors
Katharina Reinhard ${ }^{1 *}$, Benjamin Rengstl ${ }^{1}$ *, Petra Oehm ${ }^{1}$, Kristina Michel ${ }^{1}$, Arne Billmeier ${ }^{1}$, Nina Hayduk ${ }^{1}$, Oliver Kleinn ${ }^{1}$, Kathrin Kuna ${ }^{1}$, Yasmina Ouchan ${ }^{1}$, Stefan Wöll ${ }^{1}$, Elmar Christ ${ }^{1}$, David Weber ${ }^{2}$, Martin Suchan ${ }^{2}$, Thomas Bukurr ${ }^{2}$, Matthias Birtel ${ }^{1}$, Veronika Jahndel', Karolina Mroz', ${ }^{1}$, Kathleen Hobohm ${ }^{1}$, Lena Kranz ${ }^{1}$, Mustafa Diken ${ }^{2}$, Klaus Kühlcke ${ }^{1}$, Özlem Türeci ${ }^{1}+$, Ugur Sahin ${ }^{1.23} \dagger \ddagger$

Science

- Directed against new carcino-embryonic antigen CLDN6
- $2^{\text {nd }}$ generation CAR functionalized with antibody-derived CLDN6-binding domain (α CLDN6-scFv)
- Binding domain mediates exclusive specificity and high sensitivity for CLDN6
- Costimulatory domain (4-1BB) mediates prolonged survival and repetitive killing ability
- CLDN6-CAR showed strong recognition and lysis of CLDN6-positive target cells in preclinical studies

CLDN6 expressed in multiple cancers

BNT211 CAR Structure

BNT211: Next Generation CAR-T Therapy in Solid Tumors

[^1]
BNT211: CAR-T Engraftment and Stable Disease in First 2 Patients

Patient \#	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Age, gender	68 y , female	25 y , male	33 y , male
Tumor entity	Ovarian CA	Sarcoma	Testicular CA
CLDN6 IIIII+	60%	80%	60%
Stage	FIGO IIIc	unknown	IIIc
Prior treatment lines	$\mathbf{5}$	3	4
CAR-T infusion	FEB2021	MAR2021	MAR2021
DLTs	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
AEs \geq grade $\mathbf{3}^{*}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
CAR-T engraftment	9x 	(days 3-17)	>700x (days 3-24)

First dose level was well tolerated

- AEs Mild to Moderate \& Transient
- No AEs \geq grade 3 and no DLTs

CAR-T detectable across different tumor types

- Robust engraftment in all patients,
- Follow-up days 3-24 for patient \#1 and \#2, and days 3-10 for patient \#3 post CAR-T cell transfer

Tumor Reduction in Patient \#2:

- 19.7% shrinkage of tumor (RECIST 1.1)
 DLT, dose limiting toxicity; Pat, patient; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease;LD, lymphodepletion; FIGO, International Federation of Gynecology and Obstetrics; CLDN6, Claudin-6; AE, adverse event; CAR-T, chimeric antigen receptor engineered T cells BIONTニСゥ * Suspected to be related to drug product

BNT221: NEO-STIM ${ }^{\circledR}$ Personalized Neoantigen-targeted Adoptive Cell Therapy

Addresses limitations of TIL cell therapy approaches

- T cells induced from peripheral blood (NEO-STIM)
- No gene engineering or viral vectors
- Targets each patient's personal tumor neoantigens
- Multiple specific CD8+ and CD4+ T cell populations that are functional and have a favorable phenotype
- First patient dosed in Phase 1 trial in anti-PD-1 experienced unresectable stage III or IV melanoma

BNT221 cells specifically recognize autologous tumor

Lenkala D, et al. J Immunother Cancer 2020; 8(Suppl 3) A153

Agenda

Overview and business outlook

Deeper dive on our key programs

COVID-19 vaccine program (project "Lightspeed")
mRNA vaccines - FixVac and iNeST
Antibodies

Cell Therapies - CARVac and NEO-STIM T cell therapy

Small Molecule Immunomodulators

RiboCytokines

BNT411: First Data Expected in 2H 2021

- BNT411 is an intravenously administered small molecule TLR7 (toll-like receptor 7) agonist
- Engineered for high potency and high TLR7 receptor-selectivity at the therapeutically active dose range
- Activation of both adaptive and innate immune system has been observed, in particular in combination with cytotoxic therapies and CPIs
- Type 1 interferon-dominated release of cytokines and chemokines and potent stimulation of antigen-specific CD8+T cells, B cells and innate immune cells such as NK cells and macrophages
- Expected to have therapeutic potential across various solid tumor indications
- Phase $1 / 2$ a clinical trial as a mono and combination therapy ongoing

Study design:

- Phase 1/2, first-in-human, open-label, dose-escalation trial
- Evaluation of safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of BNT411 as a monotherapy in patients with solid tumors and in combination with atezolizumab, carboplatin and etoposide in patients with chemotherapy-naïve extensive-stage small cell lung cancer (ES-SCLC)
- Enrollment: ~60 participants

Agenda

Overview and business outlook

Deeper dive on our key programs

COVID-19 vaccine program (project "Lightspeed")
mRNA vaccines - FixVac and iNeST
Antibodies

Cell Therapies - CARVac and NEO-STIM T cell therapy

Small Molecule Immunomodulators

RiboCytokines

RiboCytokines:

Designed to Overcome Limitations of Recombinant Cytokine Therapy

Cytokines encoded by mRNA: A novel therapeutic concept

Systemic delivery with minimal immunogenicity

- Backbone optimized and nucleoside-modified mRNA encoding cytokine fused to human albumin
- Liver-targeting LNP formulation with intravenous delivery
- Encoded cytokines translated within cells

Designed for optimized safety, tolerability and dosing

- Prolonged serum half-life
- High bioavailability
- Lower and less frequent dosing
- Lower toxicity

Product Candidate	Indication	Pre-clinical	Phase 1	Phase 2
BNT151 (modified IL-2)	Solid Tumors			
BNT152+153 (IL-7 + IL-2)	Solid Tumors			

LNP, lipid nanoparticle; PK, pharmacokinetic; IL-2, Interleukin-2; IL7, Interleukin-7; UTR, untranslated region RiboCytokine ${ }^{\circledR}$ is a registered trademark of BioNTech

RiboCytokines: A Tailored Approach to T Cell Regulation and Stimulation

IL-2 supports differentiation, proliferation, survival and effector functions of \mathbf{T} cells

BNT151

mRNA encoding sequence-modified IL-2 variant

- Sequence modification that weakens binding to IL-2Ra (CD25)
- Designed to stimulate naïve and effector T cells with low to no expression of IL-2Ra (CD25low/neg)
- Stimulates anti-tumor effector cells without extensively triggering immunosuppressive regulatory T cells

Combination with anti-PD-1/PD-L1 therapy

BNT151: Open-label, Multicenter Phase 1/2, First-in-human Trial

Multiple solid tumors

- Up to 54 patients
- Enrollment and screening period of 13 months

Evaluation of dose escalation, safety, pharmacokinetics and pharmacodynamics of BNT151 with expansion cohorts in multiple solid tumor indications

BNT152 + BNT152: Phase 1 Basket Trial in Patients with Solid Tumors

First-in-Human RiboCytokines Trial Evaluating mRNA-encoded IL-2 + IL-7 with Adaptive Trial Design Informs Dosing

Part 2

- BNT152+153 combination in solid tumors

BNT152+153

- To initiate after dose escalation is complete for both groups A and B in Part 1

Part 1

Group B
BNT152 monotherapy
dose escalation
MAD

OBD and/or MTD

Open-label, Phase 1 dose escalation study Safety, PK, PD and anti-tumor activity of BNT152+153

Primary Endpoints

- Occurrence of TEAEs
- Dose reduction or

Secondary Endpoints

Dose reduction or to discontinuation due to TEAEs

- Occurrence of dose limiting toxicities
- DCR
in solid tumors

BNT152: IL-7
BNT153: IL-2

BIONT=Сゥ

An der Goldgrube 12
55131 Mainz
Germany

T: +49 6131 908-0
M: investors@biontech.de

[^0]: Data cut-off: October 12, 2020.
 *Denotes patients with ongoing treatment.
 *Denotes patients with ongoing treatment.
 aPR was not confirmed by a subsequent scan.

[^1]: - Evaluation of safety and tolerability
 - Ongoing Phase 1/2a study
 - Monotherapy dose level 1 completed (3 patients)
 - Data update in 2H 2021

