UNITED STATES SECURITIES AND EXCHANGE COMMISSION

Washington, D.C. 20549

FORM 6-K

REPORT OF FOREIGN PRIVATE ISSUER PURSUANT TO RULE 13a-16 OR 15d-16 UNDER THE SECURITIES EXCHANGE ACT OF 1934

FOR THE MONTH OF JANUARY 2020 COMMISSION FILE NUMBER 001-39081

BioNTech SE

(Translation of registrant's name into English)

An der Goldgrube 12 D-55131 Mainz Germany +49 6131-9084-0 (Address of principal executive offices)

Indicate by check mark whether the registrant files or will file annual reports under cover Form 20-F or Form 40-F: Form 20-F \boxtimes Form 40-F \square Indicate by check mark if the registrant is submitting the Form 6-K in paper as permitted by Regulation S-T Rule 101(b)(1): \square Indicate by check mark if the registrant is submitting the Form 6-K in paper as permitted by Regulation S-T Rule 101(b)(7): \square

EXHIBITS

<u>Exhibit</u> <u>Description of Exhibit</u>

99.1 Presentation: Corporate Presentation January 2020.

SIGNATURE

Pursuant to the requirements of the Securities Exchange Act of 1934, the registrant has duly caused this report to be signed on its behalf by the undersigned, thereunto duly authorized.

BioNTech SE

By:

/s/ Dr. Sierk Poetting Name: Dr. Sierk Poetting Title: Chief Financial Officer

Date: January 27, 2020

Corporate Presentation

January 2020

This slide presentation includes forward-looking statements

Forward-Looking Statements

Various statements in this slide presentation concerning the future expectations of BioNTech, its plans and prospects, including the Company's views with respect to the potential for mRNA therapeutics, its expectations with respect to the timing and results of clinical trials and release of clinical data (both in respect of its proprietary product candidates and of product candidates of its collaborators), the development of commercial capabilities and the transition of BioNTech to a fully integrated biopharmaceutical company, its expectations with respect to interactions with regulatory authorities such as FDA and EMA, including the potential approval of BioNTech's or its collaborators' current or future drug candidates, and expected royalty and milestone payments in connection with BioNTech's collaborations, constitute forward-looking statements. Words such as "expects," "plans," "potential," "target," "continue" and variations of these words or similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Such statements are based on the current beliefs and assumptions of the management team of BioNTech and on the information currently available to the management team of BioNTech, and are subject to change. The Company will not necessarily inform you of such changes. These forward looking statements are subject to known and unknown risks, uncertainties, assumptions and other factors that could cause the Company's actual results, performance or achievements to be materially different than any future results, performance or achievements expressed or implied by the forward-looking statements. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including the initiation, timing, progress, results and cost of the Company's research and development programs and its current and future preclinical studies and clinical trials; the timing of and the Company's ability to obtain and maintain regulatory approval for its product candidates; the Company's ability to identify research opportunities and discover and develop investigational medicines; the Company's expectations regarding the size of the patient populations for its product candidates, if approved for commercial use; the Company's estimates of its expenses, ongoing losses, future revenue and capital requirements and its needs for or ability to obtain additional financing, the Company's ability to identify, recruit and retain key personnel; the Company's and its collaborators' ability to protect and enforce its intellectual property protection for its proprietary and collaborative product candidates, and the scope of such protection; the development of and projections relating to the Company's competitors or its industry; the Company's ability to commercialize its product candidates, if approved; the rate and degree of market acceptance of the Company's investigational medicines; the Company's ability to manage its development and expansion, regulatory developments in the United States and foreign countries; the Company's ability to manufacture its product candidates with advantages in turnaround times or manufacturing cost; and the Company's ability to implement, maintain and improve effective internal controls. The preceding list is not intended to be an exhaustive list of all of the Company's forward-looking statements. Any forward-looking statements represent the Company's views only as of today and should not be relied upon as representing its views as of any subsequent date. The Company explicitly disclaims any obligation to update any forward-looking statements. The mRNA vaccines and other product candidates discussed in this slide presentation are investigational products being developed by BioNTech and its collaborators and are not currently approved by the FDA, EMA or any other regulatory authority.

-

Agenda

Who we are and what we do Our key platforms and programs Outlook in 2020 and beyond

Building a 21st century individualized immunotherapy company

Next generation immunotherapies for cancer and other diseases

- Technology agnostic approach
- Exploiting novel targets and mechanisms
- Vertical Integration with in house manufacturing

World-leading collaborators

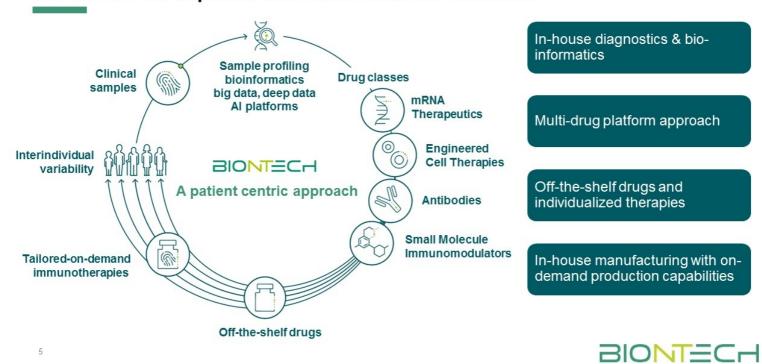
- 7 pharmaceutical collaborators and multiple leading academic institutions
- 50:50 cost and profit share agreements
 with leaders in oncology¹

Broad & diversified pipeline

- 10 product candidates in the clinic
- First registrational trial expected to start in 2020²

Large addressable market opportunity in solid tumors

- More than USD 90bn solid tumor market³ addressed
- Commercialization or co-commercialization rights retained in key geographies



Up to 7 clinical data updates expected in the next 18 months

with Genentech and Genmab; 2BNT111; 3Source: Global Data Total WW Market, top 10 available products 2018-2024 + other

Our Vision: We aspire to individualize cancer medicine

Achievements 2019 and Outlook 2020

2019 accomplishments:

- Raised USD 225m in Series B financing and USD 149m in Nasdaq IPO
- Initiated 6 clinical trials across 2 drug classes and 4 different platforms
- Started first randomized phase 2 trial for iNeST
- Dosed more than 440 patients across all BNTX programs¹ as of end 2019
- Entered into strategically important agreements with Bill & Melinda Gates Foundation and Regeneron
- Site for building new iNeST manufacturing facility purchased, planning and design work initiated, secured loan of USD 55m (EUR 50m) from European Investment Bank (EIB)

Goals for 2020:

- Start 8 or more clinical trials (alone or with our collaborators)
- Move FixVac into a pivotal phase 3 trial and iNeST into additional phase 1/2 clinical trials
- Further invest in individualized manufacturing capacities
- Establish presence on East Coast of US
- 6 1 BNTX programs: all BioNTech trials including trials sponsored by collaborators

A technology agnostic approach increases our addressable market

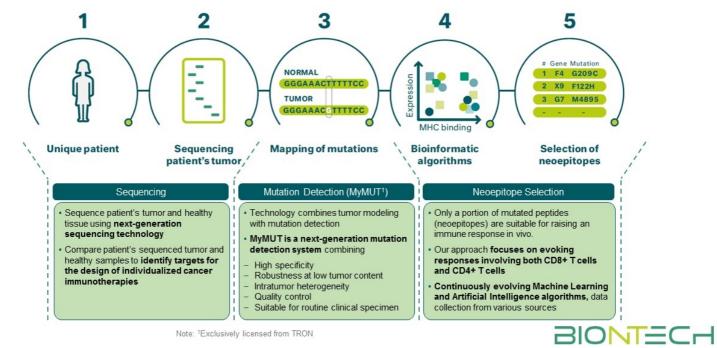
Cancer segment	Patient Population	Challenge	Our Therapeutic Strategy
High mutational burden/ adjuvant stage cancers	Significant portion of cancer patients	Poor risk-benefit profile of checkpoint inhibitors	• mRNA Neoantigen Immunotherapy (iNeST)
Low mutational burden cancers	>60% of cancers	Poor response to checkpoint inhibitors	Shared Antigens (FixVac, CAR-T cells, Antibodies)
"Immune desert" cancers	>40% of high-mutational cancers	Poor infiltration and activation of T-cells in TME ¹	mRNA Immunotherapy Immunostimulatory Compounds (intratumoral, RiboCytokines)
Cancers with MHC / B2M loss	20-30% of CPI-experienced advanced cancers	Failure of immune system to recognize tumor cells	Antibodies CAR-Ts
Refractory tumors	Patients with large tumors and multiple resistance mechanisms	Few treatment options	 Engineered Cell Therapies Combination Therapies

Portfolio approach based on molecular classification and segmentation of cancer types

¹Tumor microenvironment

...and enables us to exploit our proprietary cancer antigen library

Viral Neoantigens Tumor Associated Antigens (TAAs) Description and rationale · Cancer-selective antigens · Virus-derived proteins (mutated) proteins Over the past 15 years, we have built up a Safe and promising targets for immunotherapy: database of ~200 of tumor associated antigens, - Absent from any non-infected tissue including proprietary targets - Highly immunogenic - Not subject to immune escape Viral Oncoantigen Targets E6 & E7 for FixVac program in HPV16+ H&N cancer Cancer-Germline and Cancer-Embryo-Fetal Antigens FixVac Antibodies Antigen type and platform FixVac iNeST Tissue Restricted Differentiation Antigens FixVac Tumor-Associated Carbohydrate Antigens Antibodies CAR-T


Mutant Neoantigens

- Antigens derived from sequence-altered
- · Promising targets for cancer immunotherapy:
- Drive highly specific activation of the immune system (recognized as foreign)
- Exempt from central tolerance

Mutant Neoantigens for individualized Neoantigen Specific Immunotherapy (iNeST)

We have pioneered a truly individualized immunotherapy approach...

a

...and ability to leverage deep OMICS capabilities across all our platforms

Molecular Cancer Profiling

- Next-generation sequencing (NGS)
- Genomics
- Bioinformatics, Machine Learning, Artificial Intelligence
- High-Performance Computing

HTNGS

- HiSeq
- NovaSeq 6000
- 10X Genomics Chromium

Н

HT qRT-PCR

Fluidigm
 Biomark

Immune monitoring

- Flow cytometry and sorting
 - ELISpot

Immunology & immune therapies

Target validation (CD8+, CD4+, antibodies)
Pre-clinical models & mode of action

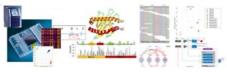
Target expression

- RNA vectors
- Cloning

Animal models and imaging

- Syngeneic and xenogeneic models
- In vivo imaging

Histology


Immune Response Analyses

- Immunohistochemistry
- Cryo-immunofluorescence

NGS analysis pipelines

- seq2HLA
- MyMut®
- uMut®

Collaboration with TRON Translational Research Center

Our strategy to commercialize our own products is reflected by differentiated collaboration agreements

Collaborating with leaders in oncology

50:50 Cost and Profit share (2016)

BIONTECH

(iNeST - BNT122)

Genentech

Co-development and Cocommercialization of novel mRNA-based, individualized cancer vaccines

- USD 310m upfront & near-term payments
- 50/50 cost and profit share on global profits
- Genentech conducting ongoing clinical trials
- BioNTech with right to co-commercialize in the US and certain European markets

50:50 Cost and Profit share (2015)

BIONTECH

Genmab

- Co-Development and cocommercialization of Bispecific antibodies (BNT311, BNT312)
- USD 10m upfront milestones
- 50/50 cost and profit share on global profits
- Genmab conducting ongoing clinical trials
- BioNTech with right to cocommercialize worldwide

Cost and Profit share (2015)

BIONTECH

SANOFI 🧳

- Development and commercialization of up to 5 intratumoral mRNA cancer immunotherapies, e.g., BNT131
- USD 60m upfront and milestones; extended collaboration in 2018 with equity investment
- Potential for up to EUR 260m in development, regulatory, and commercial milestones on each of the immunotherapies (with up to low doubledigit royalties on net sales)
- Option to convert the financial terms for 2 of these immunotherapies to a cost and profit share arrangement (first option exercised)
- BioNTech with right to co-commercialize in the US and certain EU markets

Our other collaboration agreements are structured to expand our footprint while managing risk

Collaborating with leaders in oncology, infectious diseases and rare diseases

Co-development Co-commercialization (2018) Licensing Agreement (2018)

Strategic R&D Alliance (2018) **R&D** Agreement (2019)

Licensing Agreement (2015)

BIONTECH GENEVANT

- Co-development and Cocommercialization agreement for 5 mRNA protein replacement
- therapies for rare diseases 50/50 global cost and profit share
- For each co-development project, one or the other party will take lead responsibility for commercialization (and book sales)
- 5 exclusive oncology LNP licenses to BioNTech - Genevant to receive milestones and royalties on oncology licenses
- mRNA based prophylactic flu vaccine (BNT161)
- USD 120m in upfront, equity investment and first milestones
- Up to USD 325m in potential additional milestone payments
- Up to very low double-digit royalties on worldwide sales
- mRNA based vaccines in up to 10 infectious disease collaborations
- USD 15m, with USD 5m paid on signing
- UPenn to conduct preclinical testing of mRNA vaccine compounds
- BioNTech retains the option to license in the mRNA vaccine candidates for clinical development; milestones and royalties to be paid under certain circumstances
- HIV and tuberculosis (TB) and up to 3 additional infectious diseases
- R&D payments to Penn of USD 55m as an equity investment to advance prevention and/or treatment of HIV and TB
 - Up to USD 45m in additional grants to fund additional activities in up to 3 additional infectious disease projects within the first 5 years of the collaboration
- Novel tumor targets and corresponding T-cell receptors
- USD 60m in upfront and equity investment
- Potential development, regulatory, and commercial milestones up to an aggregate of approx. USD 300m
- Up to very low double-digit royalties per drug candidate

We own in-house manufacturing capabilities for individualized treatments

We intend to further strengthen our position as a leader in the highly automated, on-demand production of individualized therapies.

mRNA Manufacturing:

- Unique process utilizing digitization and automation/robotics to ensure robust, consistent repeatability, quality control and on-demand manufacturing
- 2 mRNA GMP production facilities: Idar-Oberstein (GMP since 2011) and Mainz (GMP since 2018)
- Completion and GMP licensure of new Mainz facility for iNeST expected in 2022/23

Competential Chil Incertain of the Wilding for the City Control of the City Control of

Cell & Gene Therapy Manufacturing:

- Innovative and robust cell therapy manufacturing process
- Idar-Oberstein: GMP certified cell and gene therapy facility since 1999
- · Ongoing facility expansion providing additional, state-of-the-art cell therapy manufacturing capacity

We are led by an experienced and entrepreneurial team

Prof. Ugur Sahin, MD Co-Founder and CEO

Sean Marett CBO / CCO

Dr. Sierk Poetting CFO / COO

Dr. Özlem Türeci Co-Founder and CMO

Ryan Richardson Chief Strategy Officer

Supervisory Board

Helmut Jeggle

■ Managing Director, Athos

Former Head of Business Planning & Analyses at Hexal

Michael Motschmann

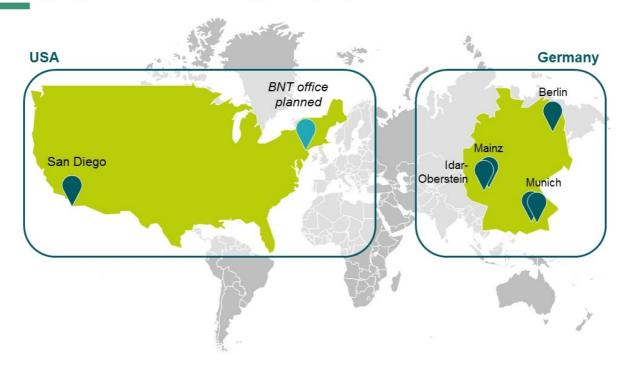
■ Founder of MIG Verwaltungs AG

■ Significant experience in building companies

Prof. Christoph Huber,

- Co-founder of BioNTech
- Prof. Emeritus at the Mainz University
- Dr. Ulrich Wandschneider
- Former CEO at Asklepios Kliniken

Scientific Advisory Board


Prof. Dr. Rolf Zinkernagel

Prof. Dr. Hans Hengartner

- Nobel Prize in Physiology or Medicine in 1996 for his discovery of immune recognition of virus-infected cells
- Professor Emeritus at Zurich University
- Professor Emeritus at ETH Zurich and University of Zurich
- World renowned immunologist

15

Building a global biotechnology company

Agenda

Who we are and what we do

Our key platforms and programs

Outlook in 2020 and beyond

We have a broad pipeline of mRNA product candidates in oncology

Drug Class	Platform	Product Candidate	Indication (Targets)	Preclinical	Phase 1	Phase 2	Rights Collaborator	Milestones
Oncolog	Jy							
		BNT111	advanced melanoma (adjuvant & metastatic)	2	-		fully-owned	report phase 1 data and phase 2 start 1H 2020; phase 3 start 2H 2020
		BNT112	prostate cancer				fully-owned	
(f 0	FixVac (fixed combination	BNT113	HPV16+ head and neck cancer ¹	4			fully-owned	phase 2 start 2H 2020
	of shared cancer antigens)	BNT114	triple negative breast cancer	D.			fully-owned	data update 1H 2020
		BNT115	ovarian cancer ¹				fully-owned	
Ε		BNT116	NSCLC				fully-owned	
	iNeST (patient specific cancer	RO7198457	1L melanoma with CPI ²				Genentech	top line data 2H 2020 ³
	antigen therapy)	(BNT1224)	multiple solid tumors	3 .			profit/loss	data update 2020
	Intratumoral Immunotherapy	SAR441000 (BNT131)	solid tumors (IL-12sc, IL-15sushi, GM-CSF, IFNa)				Sanofi (global profit/ loss share)	data update 2H 2020 ⁵

¹BNT113 and BNT115 are currently being studied in investigator-initiated phase 1 trials; ²Checkpoint Inhibitor; ³Update on the ongoing study including patient enrollment number, efficacy and safety data for an interim update expected in the second half of 2021; ⁴BNT122 (iNeST) is also being investigated in arm 2 (N=15) of the 3 arm TNBC-MERIT trial, with BNT114 as an optional treatment; BNT114 is investigated in arm 1 (N=12) and arm 3 (N=15) of the TNBC-MERIT trial (total patients in study: N=42; ⁵As the trial is sponsored and conducted by Sanofi, the timing of data updates is not under our control and is subject to change by Sanofi

Our pipeline

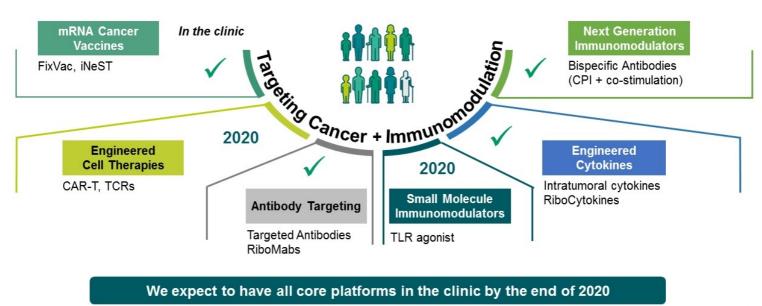
We have a broad pipeline of mRNA product candidates in oncology...

Drug Class Oncolog	Platform	Product Candidate	Indication (Targets)	Preclinical	Phase 1	Phase 2	Rights Collaborator	Milestones
	RiboMabs (mRNA-encoded antibodies)	BNT141	multiple solid tumors				fully-owned	phase 1 start 2H 2020
¥		BNT142	multiple solid tumors (CD3+CLDN6)				fully-owned	phase 1 start 2H 2020 or 1H 2021
mRi	RiboCytokines	BNT151	multiple solid tumors (optimized IL-2)				fully-owned	phase 1 start 1H 2020
	Cytokines)	BNT152+ BNT153	multiple solid tumors (IL-7, IL-2)				fully-owned	phase 1 start 2H 2020 or 1H 2021

We expect additional oncology trial starts in 2020 - with first data in 2021

Drug Class	Platform	Product Candidate	Indication (Targets)	Preclinical	Phase 1	Phase 2	Rights Collaborator	Milestones
Oncolog	Jy .							
_		BNT211	multiple solid tumors (CLDN6)				fully-owned	phase 1/2 start 1H 2020
ed Cell pies	CAR-T Cells	BNT212	pancreatic, other cancers (CLDN18.2)				fully-owned	-
gine er The ra	TCRs	Undisclosed	undisclosed				Eli Lilly (exclusive license)	-
Ш		To be selected	all tumors				fully-owned	-
s	Next-Gen CP ⁵	GEN1046 (BNT311)	multiple solid tumors (PD-L1×4-1BB)				Genmab (global 50:50 profit/loss)	data update 2H 2020
Antibodies	Immunomodulators	GEN1042 (BNT312)	multiple solid tumors (CD40×4-1BB)	*				-
An	Targeted Cancer Antibodies	BNT321 (MVT-5873)	pancreatic cancer (sLea)	2			fully-owned	
SMIM ⁶	Toll-Like Receptor Binding	BNT411	solid tumors (TLR7)				fully-owned	phase 1 start 1H 2020

⁵Checkpoint; ⁶Small Molecule Immunomodulators


Our first trial starts outside of oncology are expected by the end of 2020

Drug Class Other	Platform	Product Candidate	Indication (Targets)	Preclinical	Phase 1	Phase 2	Rights Collaborator	Milestones
		Undisclosed	Influenza				Pfizer	start first study by end of 2020
mRNA	Infectious Disease Immunotherapies	Undisclosed	up to 10 indications				Penn ¹	first phase 1 trial to start 1H 2021
		Undisclosed	HIV and tuberculosis				Bill & Melinda Gates Foundation	-
	Rare Disease PRT ²	BNT171	Not disclosed				Genmab (global 50:50 profit/loss)	first phase 1 trial to start 2H 2020
		Undisclosed	5 rare disease indications					-

¹We are eligible to receive worldwide licenses; ²Protein Replacement Therapy

Our IO strategy exploits complementary therapeutic platforms

Agenda

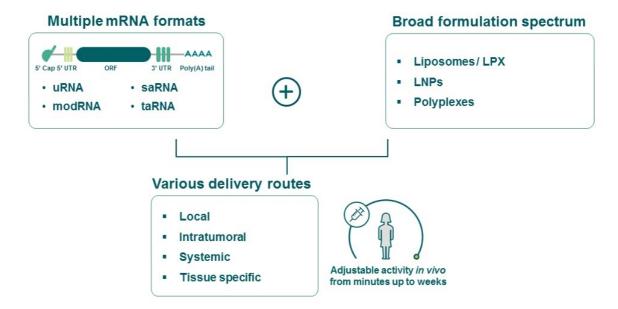
Who we are and what we do

Our key platforms and programs

mRNA vaccines – FixVac and iNeST

Antibodies

CARVac platform – CLDN6 CAR-T


RiboCytokines

Small Molecule Immunomodulator program

Outlook in 2020 and beyond

One of the broadest mRNA toolkits in the industry

We have developed multiple proprietary mRNA formats and formulations

Our mRNA formats

0 Uridine mRNA Nucleoside-modified mRNA (uRNA) (modRNA) Repeat administration Non-immunogenic vector Strong T cell responses Strong antibody responses Therapeutic protein delivery OUR mRNA **FORMATS** Trans-amplifying mRNA (taRNA): Self-amplifying mRNA Replicase and mRNA (saRNA) Sustained expression Sustained expression Highly flexible co-transfer T cell responses upon prime only Protection upon prime only Low antigen RNA doses

Our mRNA delivery formulations

Lipoplexes (FixVac, iNeST, CARVac)

LNPs (RiboMabs, RiboCytokines, Rare Disease)

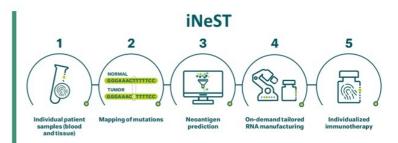
Polyplexes (Discovery Programs)

- Lipoplex: Our lipoplex formulation, or LPX, embeds the mRNA between a lipid bilayer, which is used for our FixVac and iNeST platforms
- LNPs: For other applications, we encapsulate our mRNA in lipid nanoparticles, or LNPs. These formulations are suitable for our RiboMab, RiboCytokine and rare disease protein replacement therapy platforms
- Polyplexes: Our portfolio also comprises polyplexes, which are being utilized in certain of our discovery programs, in which the mRNA is bound to a polymer and then forms nanoparticles

We are developing multiple mRNA therapeutic platforms

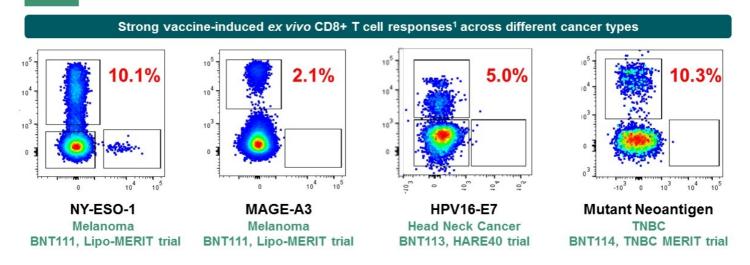
	mRNA Platform	Drug Targets	mRNA Formats	Delivery Formulations
	7 mRNA platforms	Broad range of biological targets	4 types of mRNA	Multiple optimized formulations
	FixVac	Shared Antigens	uRNA	RNA-LPX
2	iNeST	Neoepitopes	uRNA	RNA-LPX
Oncology	Intratumoral Immunotherapy	Immunomodulators	modRNA	Various formulations Intratumoral
ō	RiboMabs	mAb targets	modRNA	LNPs Intravenous delivery
	RiboCytokines	Cytokines	modRNA	Various LNP formulations
Other	Infectious Disease Vaccines	Pathogens	saRNA, taRNA, modRNA	Various LNPs for i.m. & s.c. delivery
₽ E	Rare Disease Protein Replacement Therapy	Diverse Proteins	modRNA	Liver targeted LNPs

 $uRNA; uridine \ mRNA; modRNA; nucleoside-modified \ mRNA; saRNA; self-amplifying \ mRNA; taRNA; trans-amplifying \ mRNA; taRNA; taRNA; trans-amplifying \ mRNA; taRNA; trans-amplifying \ mRNA; taRNA; taRNA; trans-amplifying \ mRNA; taRNA; taRNA$



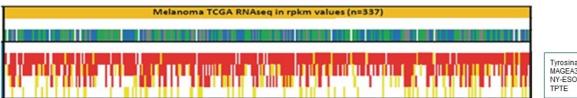
Our mRNA vaccine platforms: FixVac and iNeST

FixVac


- Off-the-shelf mRNA immunotherapy
- Targeting a fixed combination of shared antigens
 - Non-mutated antigens shared among patients with a specific cancer type
 - Applicable for almost all types of tumor antigens

- Fully individualized mRNA immunotherapy
- Targeting 20 neo-antigens unique to each patient
 - Vast majority of neo-antigens are unique to individual patients
 - Applicable across solid tumor types
- Proprietary RNA-LPX formulation for systemic dendritic cell targeting
- Strong immunogenicity observed in vivo via TLR7-driven adjuvant effect
- Potent induction of strong ex vivo CD4+ and CD8+ T cell responses

Our RNA-LPX vaccine approach


FixVac

iNeST

BIONTECH

¹T cell responses analyzed by ex vivo multimer staining analysis in blood

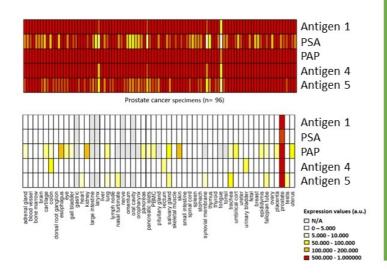
Cumulative patient coverage of FixVac Melanoma targets is over 90%

Tyrosinase MAGEA3 NY-ESO-1 TPTE

- Computational pipeline for antigen-discovery and RT-PCR validation
 - RNA-Seq data from 337 melanoma samples in TCGA
- Target-criteria
 - High expression in melanoma
 - No expression in toxicity-relevant normal cells and tissues
 - Coverage of as many patients as possible with at least 1 antigen
 - Coverage of a substantial fraction of patients with more than 1 antigen

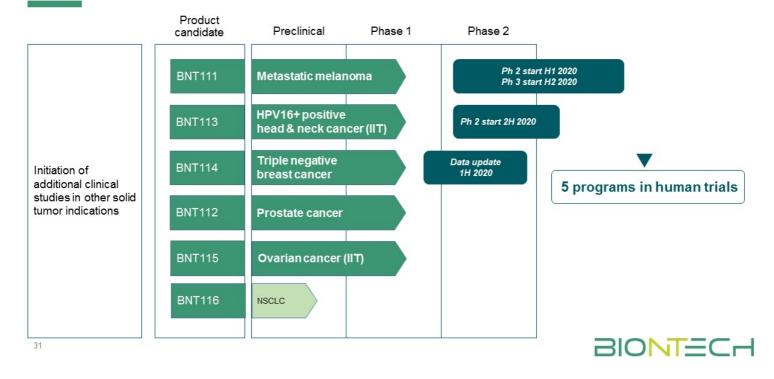
FixVac: BNT111 Interim clinical activity data (dose range 14µg -100µg)

Summary

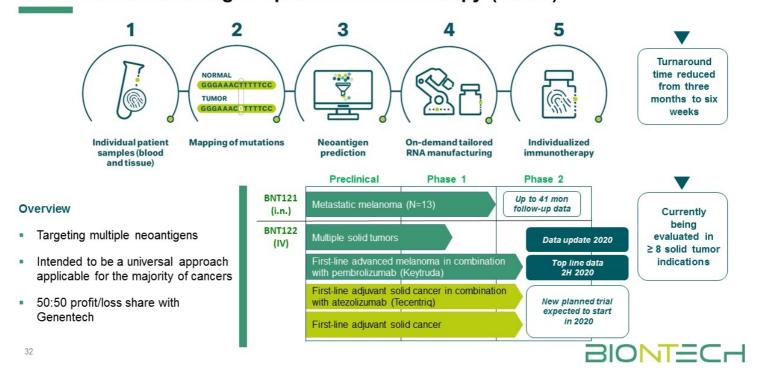

- · Advanced melanoma patients (stage III, IV)
- Out of 74 patients with available follow-u radiological imaging 42 patients were assessed for preliminary analysis as of July 29, 2019
- of 25 patients with metastatic melanoma who received BNT111 monotherapy following progression on CPI* and in some cases other therapies
 - 3 patients with partial response (PR)
 - 1 patient with metabolic complete response
 - 7 patents with stable disease (SD)
 - 14 progressive disease (PD)
- of 17 patients with metastatic melanoma who received BNT111 in combination with CPI after progression on CPI monotherapy
 - 6 patients with partial response (PR)
 - 2 patents with stable disease (SD)
 - 9 progressive disease (PD)
- · Adjuvant cohort of 32 patients still in study

Shared Antigens Targeted NY-ESO-1 / MAGE-A3 / Tyrosinase / TPTE

BNT112: FixVac Prostate Cancer



Ph1/2: first patient enrolled in December 2019


- Multipronged vaccine: Targeted antigens of BNT112 are 5 prostate cancer specific antigens (PAP, PSA and 3 undisclosed antigens)
- RNA-LPX vaccine format validated by our FixVac Melanoma program

FixVac: a flexible format which can rapidly be adapted for different tumors

Individualized Neoantigen Specific Immunotherapy (iNeST)

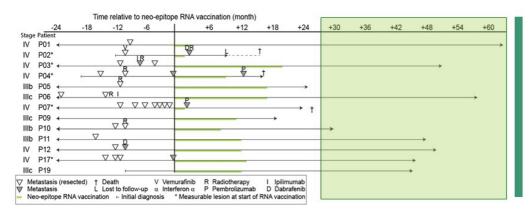
Conclusions from iNeST clinical trials

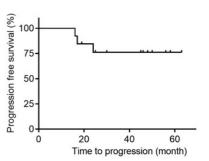
Long-term follow-up of completed trial with BNT121 (Intra-nodal administration, RNA):

Long-term relapse free disease activity with BNT121 iNeST in adjuvant melanoma

Preliminary observations in ongoing trials with BNT122 (RO7198457) (IV administration, RNA-LPX):

- iNeST can be manufactured for individual patients with clinically relevant turn-around times across a range of tumor types
- iNeST +/- atezolizumab (Tecentriq) has a manageable safety profile
- Strong iNeST immunogenicity across a range of tumor types

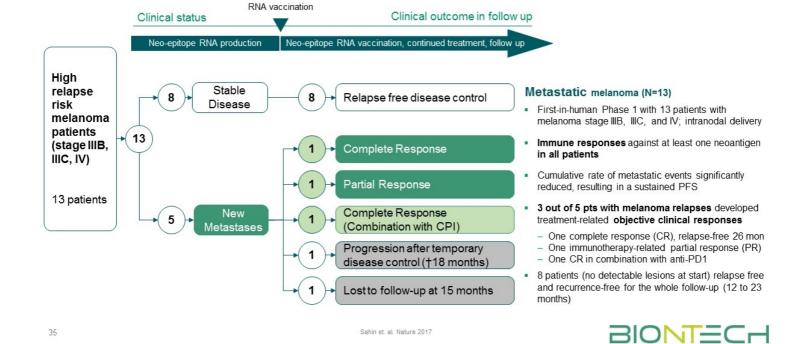

Clinical efficacy evaluation in randomized phase 2 trials initiated


Update for BNT121 (as of October 2019)

Melanoma Stage IIIB, IIIC, and IV, 13 patients, intranodal delivery against 10 neoantigens

Metastatic relapse analyses

9 of 13 patients without documented PFS events



Stable progression free survival in adjuvant melanoma

34 Sahin et al., Nature 2017

BNT121: Interim clinical activity data (dose range 14µg -100µg)

iNeST: Results expected for phase 1 in 2020, for phase 2 in 2H 2020

Genentech

Phase 1a/1b in Multiple Solid Tumors:

Open-label, dose-escalation study of safety and pharmacokinetics

Enrollment: Up to 770 Start date: Dec 2017 Data update: 2020

• Tumor types: Melanoma, NSCLC, bladder cancer, CRC, TNBC,

renal cancer, H&N cancer, other solid tumors

Phase 1a: Single-agent

Phase 1b: Combination with atezolizumab

- Primary outcome measures in iNeST + atezolizumab treated participants compared with iNeST-only participants include:
- · Dose-limiting toxicities (DLTs)
- · Adverse events (AEs)

Phase 2 in Advanced Melanoma: Interventional open-label, multicenter randomized study of efficacy and safety

Enrollment: 132
 Start date: Jan 2019
 Topline data: 2H 2020

Topline data: 2H 2020
 Tumor types: Advanced melanoma

Phase 2: Combination with pembrolizumab

- Study to evaluate the efficacy and safety of iNeST in combination with pembrolizumab vs. pembrolizumab alone in participants previously untreated in advanced melanoma (first-line)
- Primary endpoint in iNeST+ pembrolizumab treated participants compared with pembrolizumab-only participants:
- · Progression-free survival (PFS)

Genentech

Who we are and what we do

Our key platforms and programs

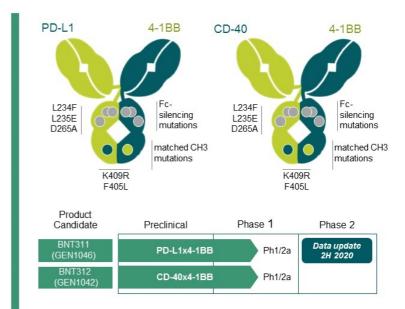
mRNA vaccines – FixVac and iNeST

Antibodies

CARVac platform – CLDN6 CAR-T

RiboCytokines

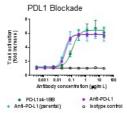
Small Molecule Immunomodulator program

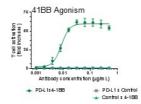

Outlook in 2020 and beyond

Next-Gen checkpoint immunomodulators

Two bispecific antibodies partnered with Genmab

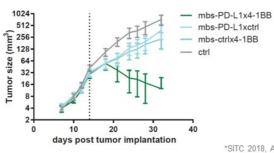
- Potential "first-in-class" bispecific antibodies
- Conditional activation of immuno-stimulatory checkpoint activity
- 50:50 profit/loss share
- Both programs are now in the clinic




Next-Gen checkpoint immunomodulators

Characteristics

- Bispecific antibody combining constitutive CPI blockade and conditional co-stimulatory activity
- Enhanced prolife-ration of antigen specific activated T cells in the presence of PD-L1+ cell



- Constitutive PD-L1 blockade & conditional 4-1BB agonism
- Increased tumor infiltrating lymphocyte (TIL) expansion in human tumor tissue cultures ex vivo
- Induced tumor regression of murine tumors superior to pure PD-L1 blockage and is associated with an increase in tumor-specific CD8 T-cells

Preclinical antitumor activity beyond PDL1 blockade

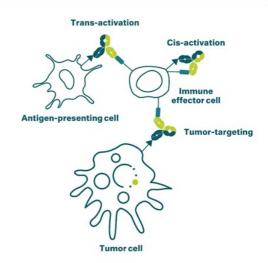
Bispecific antibody GEN1046 (BNT311): Phase 1/2a in solid tumors

First-in-human, open-label, dose-escalation trial with expansion cohorts to evaluate safety of GEN1046 (PD-L1x4-1BB) in subjects with malignant solid tumors

• Enrollment: 192 • Data update: 2H 2020

Tumor types: Malignant Solid Tumors

Intervention:


- GEN1046 (BNT311) is a PD-L1x4-1BB bispecific antibody that induces conditional activation of T cells through 4-1BB stimulation which is dependent on simultaneous binding to PD-L1
- · GEN1046 (BNT311) IV once every 21 days
- · Dose levels determined by the starting dose and the escalation steps taken in the trial

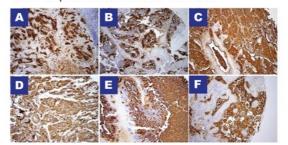
Description:

- · Open-label safety trial
- · Two parts, a dose escalation (phase 1, first-in-human) and an expansion part (phase 2a)

Key Primary endpoints:

- · Dose limiting toxicity
- · Adverse events
- · Safety laboratory parameters

BNT321: Cancer antibody targeting Cancer Associated Carbohydrate sLe^a


Characteristics

- Fully human IgG1 mAb with subnanomolar affinity, potent cell killing by ADCC &CDC activity.
- Targets sialyl Lewis A epitope (sLe^a) epitope present in a range of glyco-proteins collectively known as CA19-9
- CA19-9 is specifically expressed in pancreatic and various other cancers. Shedded CA19-9 is a prognostic marker in these cancers
- CA19-9 is functionally associated with carcinogenesis¹

Preliminary data

- Six patients evaluated in combination with chemotherapy; four of them met the criteria for partial response and two patients met the criteria for stable disease. BNT321 was generally well tolerated by all six patients
- First patient enrolled to resume the BNT321 trial against pancreatic cancer in December 2019

sLea expression in human cancers

- A. Pancreatic ductal adenocarcinoma
- B. Colon carcinoma
- C. Lung adenocarcinoma
- D. Urinary bladder, mucinous adenocarcinoma
- E. Colon metastatic to ovary
- F. Breast carcinoma, lymph node

¹Engle et al, Science 2019: The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice

AACR 2016, Abstract CT026, Ragupathi_Maffuid

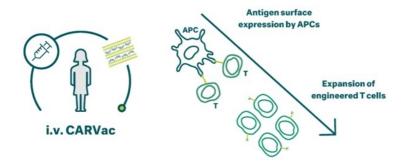
Who we are and what we do

Our key platforms and programs

mRNA vaccines – FixVac and iNeST

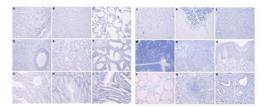
Antibodies

CARVac platform – CLDN6 CAR-T

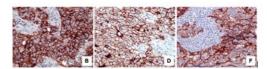

RiboCytokines

Small Molecule Immunomodulator program

Outlook in 2020 and beyond



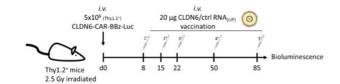
BNT211: Next generation CAR-T targeting CLDN6 with CARVac "primer"

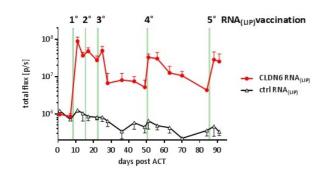


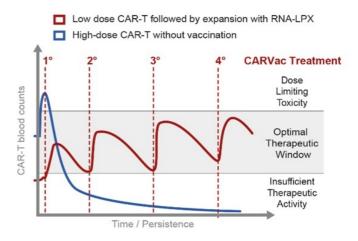
CAR-T cell therapy + RNA Vaccine to amplify CAR-T cell in vivo

CLDN6 is not present in healthy tissues

CLDN6 is expressed in multiple cancers




Ovarian cancer Testicular tumor Lung cancer


Complete eradication of advanced tumors demonstrated in an ovarian carcinoma xenograft model

BNT211: Next generation CAR-T targeting CLDN6 with CARVac "primer"

Applicability shown for CLDN6, CLD18.2, CD19 CAR-T cells

RNA-lipoplex vaccine enhances expansion & persistence of CAR T

44

1Reinhard et al, Science 2020: An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors

Further development of engineered T cell therapies

Key Plans

- Start first-in-human trial for CLDN6 CAR-T in solid tumors
- Second CAR-T in pipeline for solid tumors: CLDN18.2 CAR-T
- Develop CARVac with other CAR-T therapies
- Plan to announce first TCRs for TCR engineered therapies
- Expansion of certified GMP T cell manufacturing facilities planned to be completed in 2020

Idar-Oberstein: GMP certified Cell Therapy Manufacturing

Front view model of final layout with the existing buildings A/B and the new buildings C and D (D behind B).

Who we are and what we do

Our key platforms and programs

mRNA vaccines – FixVac and iNeST

Antibodies

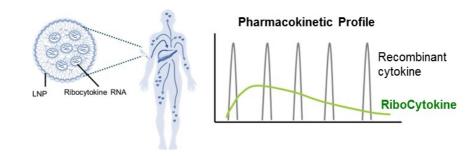
CARVac platform – CLDN6 CAR-T

RiboCytokines

Small Molecule Immunomodulator program

Outlook in 2020 and beyond

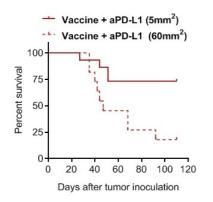
RiboCytokines: a novel therapeutic platform

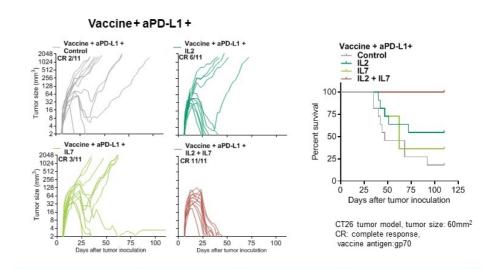

The Concept

- Cytokines encoded by mRNA and produced in the patient
- Improved PK properties to improve tolerability and activity
- Cytokine design to improve immunological properties and tolerability

Therapeutic Goals

- Overcome resistance mechanisms by therapeutic synergy
- Improve activity of mRNA Vaccines


Worldwide rights; wholly owned



RiboCytokines boost clinical activity of vaccination and PD-L1 blockade

CT26 tumor model, vaccine antigen: gp70

Effect of tumor size on treatment success of vaccination + aPD-L1

RiboCytokines boost the clinical activity of vaccination + aPD-L1 in large tumors

Who we are and what we do

Our key platforms and programs

mRNA vaccines – FixVac and iNeST

Antibodies

CARVac platform – CLDN6 CAR-T

RiboCytokines

Small Molecule Immunomodulator program

Outlook in 2020 and beyond

BNT411: TLR7 agonist has entered the clinical stage

- Intravenously administered small molecule TLR7 (toll-like receptor 7) agonist
- Engineered for high potency and high selectivity for TLR7 receptor at the therapeutically active dose range
- Activates both adaptive and innate immune system
- Type 1 interferon-dominated release of cytokines and chemokines and potent stimulation of antigen-specific CD8+ T cells, B cells and innate immune cells such as NK cells and macrophages
- To be used in combination with chemotherapy and checkpoint inhibitors. Qualifies for various solid tumor indications and small cell lung cancer
- IND filed in November 2019
- We expect to initiate a Phase 1/2a clinical trial as a mono and combination therapy in solid tumors in H1/2020

Planned study design for FIH trial:

Phase 1/2a, first-in-human, open-label, dose-escalation trial with expansion cohorts to evaluate safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of BNT411 as a monotherapy in patients with solid tumors and in combination with atezolizumab, carboplatin and etoposide in patients with chemotherapy-naïve extensive-stage small cell lung cancer (ES-SCLC)

Multiple angles for therapeutic synergy across platforms

Approved PD1/PL1 Inhibitors

mRNA Cancer Vaccines

- FixVac Melanoma (BNT111): Induces objective responses in CPIexperienced patients
- iNeST (BNT122): Currently in Phase 2 in combination with CPI in 1L Melanoma.
 2 adjuvant trials planned in 2020

mRNA Cancer Vaccines

Engineered Cytokines

 Ribocytokine IL-2 (BNT151): Amplification of vaccine induced T cell response in pre-clinical studies

Engineered Cell Therapies

mRNA Cancer Vaccines

 BNT211: First-of-kind CLDN-6 CAR-T approach utilizing <u>C</u>AR-T <u>Amplifying</u> <u>RNA Vaccine</u> (CARVac). Significant amplification of CAR-T cells in preclinical studies (published in SCIENCE, 2020)

Broad therapeutic potential across a range of solid tumors

Who we are and what we do

Our key platforms and programs

Outlook in 2020 and beyond

We expect a significant news flow in the upcoming 12-18 months

	E-0802-000			10000000		
Platform	Candidate	Indication (Target)	1H-2020	2H-2020	2021 ³	2022 ³
FixVac	BNT111	Advanced Melanoma	Report Phase 1 Start Phase 2	Start Phase 3	Phase 2/3	
	BNT112	Prostate Cancer				Phase 1/2
	BNT113	HPV16+ H&N Cancer		Start Phase 2		70.00.00.00.00.00.00.00
	BNT114	Triple Negative Breast Cancer	Data update Phase 1			
iNeST	R07198457	1L Melanoma with CPI		Trial progress update1	Phase 2	
	(BNT122)	Multiple ST (baskettrial)	Data upda	te Phase 1/2		
Intratumoral	SAR441000	Solidtumors		Report Phase 1/2 ²		
Immunotherapy	(BNT131)	(IL-12sc, IL-15sushi, GM-CSF, IFNα)		Report Filase 1/2-		
RiboMabs	BNT141	Multiple ST		Start Phase 1		
	BNT142	Multiple ST (CD3+CLDN6)		Start F	Phase 1	
RiboCytokines	BNT151	Multiple ST (Optimized IL-2)	Start Phase 1			Phase 1
	BNT152/153	Multiple Solid Tumors (/L-7, /L-2)		Start F	Phase 1	
CAR-T Cells	BNT211	Multiple ST (CLDN6)	Start Phase 1/2			Phase 1/2
Next-Gen CP	BNT311	Multiple ST (PD-L1x4-1BB)		Report Phase 1/2		
Immunomodulators	BNT312	Multiple ST (CD40x4-1BB)				
Antibodies	BNT321	Pancreatic Cancer (CA19-9)				
TLR7 Ligand	BNT411	Multiple ST (TLR7)	Start Phase 1		Report F	hase 1/2
Infectious and Rare Diseases		Influenza		Start first study		
		Up to 10 Infectious Disease Indications			Start first Phase 1	
Diseases		5 Rare Disease Indications		Start first Phase 1		

We expect this topline data update to include an update on the ongoing study, including patient enrollment numbers, with full efficacy and safety data for an interim update expected in the second half of 2021; "As the trial is sponsored and conducted by Sanofi, the timing of data updates is not under our control, and is subject to change by Sanofi. "Our expectations for timing of milestones beyond 2020 a premised on and subject to the achievement of earlier milestones on their expected timelines, "Press releases will be issued once first patient has been dosed."

Building a 21st century immunotherapy company

2020 Outlook

- 5 trial updates (incl. publishing BNT111 FixVac Melanoma phase 1/2 data in peer reviewed journal)
- 2 Initiate phase 3 registrational trial for BNT111 FixVac Melanoma
- 3 Initiate 2 additional iNeST trials in adjuvant stage cancers
- 4 Initiate **phase 1/2 trial using CARVac (BNT211)** in CLDN6+ solid tumors (e.g., ovarian, testicular)
- 5 Initiate phase 2 trial in HPV16+ H&N cancer
- 6 Continue to build **global clinical development organization** (US development team on East Coast)

